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EDITORIAL
TheLast Conundrum

Turbulence isthe last great unsolved problem of classical physics. Or soit goesfor aquote
varioudly attributed to one of the great modern physicists Albert Einstein, Richard Feynman, Werner
Heisenberg and Arnold Sommerfeld. But in fact the closest sentiments to this quote that could be
traced are due to the classical physicist Horace Lamb who actually wrote starting with the second
edition of his celebrated book Hydrodynamics (1895) under the heading of Turbulent Motion: “It
remainsto call attention to the chief outstanding difficulty of our subject.” A more humorous fable,
also attributed to several of the great ones, goes as follows. As helay dying the modern physicist
asked God two questions: Why relativity (or quantum mechanics, depending on who is departing),
and why turbulence? “I really think,” said the famed physicist, “He may have an answer to the
first question.” No one knows how to obtain stochastic solutions to the well-posed set of partial
differential equations that governs turbulent flows. Averaging those nonlinear equations to obtain
statistical (nonstochastic) quantities always leads to more unknowns than equations, and ad hoc
modeling is then necessary to close the problem. So, except for arare few limiting cases, first-
principle analytical solutions to the turbulence conundrum are not possible. In the words of John
Lumley, turbulence is adifficult problem that is unlikely to suddenly succumb to our efforts. We
should not await sudden breakthroughs and miraculous solutions, but rather keep at it dowly
building one small brick at atime.

Two of the greatest achievements of turbulence research are the Kolmogorov's universal
equilibrium theory and the universal logarithmic law of thewall. In fact, thereis adirect analogy
between the two high-Reynolds-number asymptotes, one being concerned with a cascade of energy
and an inertial subrange in the frequency domain and the other with a hierarchy of eddies and an

inertial sublayer in the physical space. The overall flow dynamics in both the energy spectrum



subrange and the wall-bounded flow sublayer is independent of viscosity. Dimensional reasoning,
similarity and asymptotic analysis are the tools of choice to derive analytical expressions without
actually solving the intractable governing equations.

One of the fundamental tenets of boundary layer research isthe ideathat any satistica
turbulence quantity (mean, rms, Reynolds stress, etc.) measured at different facilities and at different
Reynolds numbers will collapse to asingle universal profile when non-dimensionalized using the
proper length and velocity scales (different scales are used near the wall and away fromit). Thisis
termed self-similarity or self-preservation and alows convenient extrapolation from the low-
Reynolds-number laboratory experiments to the much higher Reynolds number situations
encountered in typica field applications. The universa logarithmic profile mentioned above
describes the mean streamwise velocity in the overlap region between the inner and outer layers of
any wall-bounded flow, and is the best known result of the stated classical idea

The log-law has been derived independently by Ludwig Prandtl and G. |. Taylor using
mixing length arguments, by Theodore von Karmén using dimensional reasoning, and by Clark B.
Millikan using asymptotic analysis. Those names belong of course to the revered giants of our
field. Questioning the fundamental tenet or its derivativesis, therefore, tantamount to heresy. But
the questions and doubts linger as evidenced from the work of Simpson (1970), Malkus (1979),
Barenblatt (1979), Long (1981), Willmarth (1989), George (1992), Bradshaw (1993), Sreenivasan
(1993), Smits (1994), among others, who at different times challenged various aspects of this law.
And those are only the ones who, with varying degrees of difficulty, could get their work published.
There is strong suspicion, among the sacrilegists at least, that Reynolds number effects persist
indefinitely for both mean velocity and, more pronounceable, higher-order statistics, and hence that
true self-preservation is never achieved in agrowing boundary layer. In fairnessto the high priests,

their logarithmic law was always intended to be a very high-Reynolds-number asymptote. These



issues and the cited references could be found in greater details in the survey by Gad-el-Hak and
Bandyopadhyay (Applied Mechanics Reviews 47, no. 8, pp. 307-365, 1994).

If in fact the log-law isfallible, the implications are far reaching. Resolution of the full
equations, viadirect numerical smulations, at al but the most modest values of Reynolds number is
beyond the reach of current or near-future computer capabilities. Modeling will, therefore, continue
to play avital role in the computations of practical flows using the Reynolds-averaged Navier-
Stokes equations. Flow modelers, in attempting to provide concrete information for the designers
of, say, ships, submarines and aircraft, heavily rely on similarity principlesin order to model the
turbulence quantities and circumvent the well known closure problem. Since practicaly all
turbulence models are calibrated to reproduce the law of the wall in simple flows, failure of this
universal relation virtually guarantees that Reynolds-averaged turbulence models would fail too.
Finaly, developers of flow control devicesto reduce drag, enhance lift, etc., often have to extrapolate
the widely available low-speed (or more precisely low-Reynolds-number) results to high-speed
flows of practical interest where no data are available. Such extrapolation is not possible if the
difficult-to-quantify Reynolds number effects persist indefinitely. For both scientists and engineers
the message is essentially back to the drawing board!

In acommunity of conformists, the heretics never have it easy, of course. The peer review
system, while essential for weeding out the charlatans, the misguided and the fools, is somewhat
biased against unorthodox ideas. Nevertheless, the latest two papers to question the infallibility of
the log-law are the article by George and Cadtillo that follows this editoria and the one by
Barenblatt, Chorin and Prostokishin, also published in Applied Mechanics Reviews (vol. 50, no. 7,
pp. 413429, 1997). The two teams tackle the same problem quite differently and independently.
Both papers offer concrete aternatives to the Reynolds-number-independent law of the wall.

Barenblatt et a. use scaling laws that invoke a zero-viscosity asymptote, while George and Castillo



introduce new tools they term asymptotic invariance principle (AIP) and near asymptotic, which
result in anew law of the wall with explicit Reynolds number dependence. George and Castillo's
new ‘law’ is deduced from first principles and fits existing mean-velocity data better. Significantly,
the same methodol ogy advanced by William George applies to higher-order statistics aswell.

When the log-law and its consequences are challenged, the usual immediate reaction isto
doubt the credentials of the blasphemer. Something is wrong with her model, with his experiment,
with her numerical scheme, or with an endlesslist of potential pitfalls. These are al genuine
concerns that turn out to be valid most of the time, but paranoiacs have enemiestoo! Thereisaso
the persistent albeit misguided argument that the log-law fits the data well enough for engineering
applications. If itisn't broke, don't fix it! This pragmatism is of course simultaneously the curse
and the blessing of science conducted by engineers. Moreover, while the errors involved in
attempting to fit the log-law to existing mean-velocity data are quite tolerable considering our
inability to accurately measure the friction velocity (the velocity scale necessary to collapse the
plots), the corresponding errors for higher-order statistics are egregious. The entire enterprise is not
unlike the sixteenth century debate over the Ptolemaic view of the heavens and the Copernicus
model seeking to replaceit. The former theory served navigators well for over 1400 years. The
Copernican theory made only small corrections but radically changed man's view of his universe.
And it was a masterpiece in terms of its economy of postulates and assumptions, a necessary
condition for theoretical elegance.

In the paper that follows, the readers of AMR are treated to what is perhaps the most rigorous
challenge to date to the law of thewall. The articleisareview but not in the traditional sense:
though centered around developing a new theory that offers a viable aternative to the classical
logarithmic velocity profile and its consequences, the novel theory is validated using an abundant of

experimental data available in the open literature. In that sense then the paper represents a complete



review of its subject matter. The theory presented for the zero-pressure-gradient boundary layer is
derivable from first principles and is extendible to other wall-bounded flows including channel and
pipe flows, boundary layers with pressure-gradient, and wall jets. It ishoped that the publication of
the following clearly iconoclastic article will spur a new way of looking at wall-bounded flows and
of challenging the status quo. One should of course ask the usual barrage of questionsthat only a
vibrant collection of skeptica neurons could muster. Is the theory smple, eegant and self-
consistent? Doesthe model provide a better fit to the data? Doesit explain previous contradictions?
I's the theory based on a minimum number of assumptions? Isit extendible to more complex
situations? Are the results asymptotically correct? Isthelogic sound? Isthe mathematics free of
errors? .... A fitting end to this editorial isto once again quote John Lumley, my (elder) academic
sibling and the doctoral thesis advisor of William George. “.... A theory that does all that in an
effortless way is often called elegant. Tomorrow, it may be wrong. Even so, it deserves to be

regarded as one of the better things of which man is capable.”
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