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There has been considerable controversy during the past few years concerning the validity of the classical log law
that describes the overlap region of the mean-velocity profile in the canonical turbulent boundary layer. Alternative
power laws have been proposed by Barenblatt, Chorin, George, and Castillo, to name just a few. Advocates of either
law typically have used selected data sets to foster their claims. The experimental and direct numerical simulation
data sets from six independent groups are analyzed. For the range of momentum-thickness Reynolds numbers of
5×× 102–2.732×× 104, the best-fit values are determined for the “constants” appearing in either law. Our strategy
involves calculating the fractional difference between the measured/computed mean velocity and that calculated
using either of the two respective laws. This fractional difference is bracketed in the region±±0.5%, so that an
accurate, objective measure of the boundary and extent of either law is determined. It is found that, although the
extent of the power-law region in outer variables is nearly constant over a wide range of Reynolds numbers, the
log-region extent increases monotonically with Reynolds number. The log law and the power law do not cover
the same portion of the velocity profile. A very small zone directly above the buffer layer is not represented by
the power law. On the other hand, the inner region of the wake zone is covered by it. In the region where both
laws show comparable fractional differences, the mean and variance were calculated. From both measures, it is
concluded that the examined data do not indicate any statistically significant preference toward either law.

I. The Opening Arguments

T HE Reynolds numbers encountered in many practical situations
are typically several orders of magnitude higher than those

studied computationally or even experimentally. High-Reynolds-
number research facilities are expensive to build and operate, and
the few existing are heavily scheduled with mostly developmen-
tal work. For traditional wind tunnels, additional complications
are introduced at high speeds due to compressibility effects and
probe-resolution limitations near walls. Likewise, full computa-
tional simulation of high-Reynolds-number flows is beyond the
reach of current capabilities. Understanding of turbulence and mod-
eling will, therefore, continue to play a vital role in the computa-
tion of high Reynolds number practical flows using the Reynolds
averaged Navier–Stokes equations. Because the existing knowl-
edge base, accumulated mostly through physical as well as numer-
ical experiments, is skewed toward the low Reynolds numbers, the
key question in modeling high-Reynolds-number flows is what the
Reynolds number effects are on the mean and statistical turbulence
quantities.

One of the fundamental tenets of boundary-layer research is the
idea that, for a given geometry, any statistical turbulence quantity
(mean, rms, Reynolds stress, etc.) measured at different facilities
and at different Reynolds numbers will collapse to a single univer-
sal profile when nondimensionalized using the proper length and
velocity scales. (Different scales are used near the wall and away
from it.) This is termed self-similarity or self-preservation and al-
lows convenient extrapolation from the low-Reynolds-number labo-
ratory experiments to the much higher-Reynolds-number situations
encountered in typical field applications. The universal log profile
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describes the mean streamwise velocity in the overlap region be-
tween the inner and outer layers of any wall-bounded flow and is
the best known result of the stated classical idea.

The log law has been derived independently by Ludwig Prandtl
and G. I. Taylor using mixing length arguments, by Theodore von
Kármán using dimensional reasoning, and by Clark B. Millikan
using asymptotic analysis. Those names belong of course to the
revered giants of our field. Questioning the fundamental tenet or its
derivatives is, therefore, tantamount to heresy. However, the ques-
tions and doubts linger as evidenced from the work of Simpson,1

Malkus,2 Barenblatt,3 Long and Chen,4 Wei and Willmarth,5 George
et al.,6 Bradshaw,7 Purushothaman,8 and Smith,9 among others,
who at different times challenged various aspects of this law. There
is strong suspicion, among the sacrilegists at least, that Reynolds
number effects persist indefinitely for both mean velocity and,
more pronouncedly, higher-order statistics and, hence, that true self-
preservation is never achieved in a growing boundary layer. In fair-
ness to the high priests, their log law was always intended to be a
very high-Reynolds-number asymptote. These issues are discussed
in greater details by Gad-el-Hak and Bandyopadhyay.10

More recently, Barenblatt et al.11 and George and Castillo12 both
questioned the infallibility of the log law. To be sure, the two teams
tackle the same problem quite differently and independently. Both
papers offer concrete alternatives to the Reynolds number indepen-
dent law of the wall. Barenblatt et al.11 use scaling laws that invoke a
zero-viscosity asymptote, whereas George and Castillo12 introduce
new tools they term asymptotic invariance principle and near asymp-
totic, which result in a new law of the wall with explicit Reynolds
number dependence. Wosnik et al.13 used those new tools and as-
serted that the inhomogeneity of a boundary layer in the streamwise
direction demands separate velocity scales for the inner and outer
layers. This, according to them, naturally leads to a power-law de-
scription of the overlap region. Fully developed pipe and channel
flows, on the other hand, are homogeneous in the streamwise direc-
tion, and both the inner and outer flows can be scaled with a single
velocity, which results in a log law but with coefficients that depend
on the Reynolds number.

If in fact the classical, Reynolds number independent log law
is fallible, the implications are far reaching. Flow modelers, in
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attempting to provide concrete information for the designers of,
for example, ships, submarines, and aircraft, heavily rely on sim-
ilarity principles to model the turbulence quantities and circum-
vent the well-known closure problem. Because practically all
turbulence models are calibrated to reproduce the law of the wall in
simple flows, failure of this universal relation virtually guarantees
that Reynolds averaged turbulence models would fail too.

During the past few years, the debate between the log- and power-
law camps has intensified. Advocates of either law typically have
used selected data sets plotted in a certain way to foster their claims.
In the present research, we use the method of fractional differ-
ence to analyze the experimental and direct numerical simulation
(DNS) data sets from six independent groups for a large range of
momentum-thickness Reynolds numbers. None of the data sets or
the contested laws is our own, and the present analysis should pro-
vide an objective, impartial measure of the validity of either law.

II. The Debate
The controversy surrounding the validity of the classical log law

has been intensified considerably during the past few years.11−18

The decibel level of a recent shouting match (Barenblatt et al.19 and
Österlund et al.20) has been particularly unsettling. Entire sessions
during recent AIAA, American Physical Society, and American So-
ciety of Mechanical Engineers meetings have been devoted to the
controversy. The IUTAM Symposium on Reynolds Number Scal-
ing in Turbulent Flows (Princeton, NJ, Sept. 2002), where a second
shouting match took place, has been dominated by the debate.

A very simple way to derive the classical log law is to recognize
the two-scale nature of the turbulent boundary layer. Close to a
smooth wall, the inner region, viscosity is important, and the proper
velocity and length scales are, respectively, the friction velocityuτ
and the viscous length scale (or wall unit)ν/uτ , whereν is the
kinematic viscosity anduτ =√(τw/ρ), whereτw is the shear stress
at the wall andρ is the fluid density. Sufficiently far from the wall,
the outer region, inertia is important there and the proper velocity
and length scales are, respectively, the velocity outside the shear
layerU0 and the boundary-layer thicknessδ. An overlap region is
presumed to exist for distances from wallν/uτ ¿ y¿ δ, or roughly,
and empirically, fromy= 30ν/uτ to y= 0.2δ. Note that the higher
limit of this range expressed in wall units is typically a few hundreds
at the typical laboratory Reynolds numbers and a few thousands
at the typical field Reynolds numbers. Dimensional reasoning or
asymptotic analysis yields the log law for the mean-velocity profile
in the overlap region. Written in terms of the inner variables, that
is, the usual( )+ notation, the log law reads

u+log = (1/κ)ln(y+)+ Clog (1)

whereu(x, y) is the mean streamwise velocity and the von K´armán
constantκ and the interceptClog are usually assumed independent of
Reynolds number. The same log law can also be written in terms of
the outer variables. If this log law were valid, then experimental data
of the mean-velocity profile plotted in a semilog diagram should lie
on a straight line over the entire overlap zone as shown generically
in Fig. 1a. The normalized gradient of the velocity is given by

GL= κ du+

dy+
= 1

y+
(2)

and should be represented by a straight line with a slope of−1 in
the double-log diagram shown in Fig. 1c.

The genesis of the power law is a mere curve fitting of the form

u+pow = Cpow(y
+)α (3)

where the coefficientCpow and the powerα are generally assumed
Reynolds number dependent (Schlichting21). Sreenivasan22 argues
that, although the power law originally used by engineers to de-
scribe the mean-velocity profile has been discredited by scientists
since Millikan23 derived the log law from asymptotic arguments,
the basis for the power law is a priori as sound as that for the log
law, particularly at low Reynolds numbers. Barenblatt et al.11 and
George and Castillo12 offer competing theories to derive the power

Fig. 1a Mean-velocity profile in a semilog plot.

Fig. 1b Mean-velocity profile in a double-log plot.

Fig. 1c Normalized gradient of the log law in a double-log plot.

Fig. 1d Normalized gradient of the inner power law in a double-log
plot.

law in the overlap region. An additional power law for the region
between the outer boundary of the first power law and the outer
edge of the boundary layer was suggested by Barenblatt et al.18 To
avoid confusion, the first mentioned power law will be termed inner
power law and the second one outer power law. Herein, we focus on
the inner power law suggested by Barenblatt.11,18 If the power law
were valid, then data concerning the mean-velocity profile should
lie on straight lines in the double-log plot as shown for the inner
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power law in Fig. 1b. The normalized gradient

GP= 1

αCpow

1

(y+)α
du+

dy+
= 1

y+
(4)

should also lie on a straight line with a slope of−1 in the double-log
plot shown in Fig. 1d.

Advocates of either law typically use plots similar to those in
Fig. 1 to foster their claims. The quality in relation to the way
a particular law describes the mean-velocity profile has not been
investigated systematically. An unbiased quality analysis applied
evenly to both the log and the power laws is needed. Furthermore,
if one of the laws is to be preferred, then the analysis of a large
amount of independent data should show that. This is the strategy
adapted herein using a rather simple tool for statistical analysis, the
fractional difference, to be described next.

III. Method of Fractional Difference
The fractional difference (FD) of the mean-velocity profile is

the related difference between the experimental and the theoretical
value ofu+ at the samey+ position

FDlog%= 100× [1− (u+log

/
u+exp

)]
(5)

FDpow%= 100× [1− (u+pow

/
u+exp

)]
(6)

Analogous to this, the FD of the gradient (FDG) of the mean-velocity
profile is constructed thus:

FDGlog%= 100×
[

1− 1

κ

1

y+

(
du+

dy+

)−1

exp

]
(7)

FDGpow%= 100×
[

1− αCpow(y
+)α−1

(
du+

dy+

)−1

exp

]
(8)

The FD is computed independently for all laws under consid-
eration, regardless of which law the original authors might have
contemplated. The smaller the FD is, the better the experimental
data reproduced by the law applied. If one of the laws show signif-
icantly smaller FD or FDG values in a certain region of the profile,
then this law should be preferred there.

Special attention is given to the determination of the gradient
of the mean-velocity profile from experimental data. Most of these
data are taken nonequidistantly iny+ so that a weighted gradient
formulation24 more accurately represents the true gradient. Thus,

du+

dy+
= β1

u+i − u+i − 1

y+i − y+i − 1

+ β2
u+i + 1 − u+i
y+i + 1 − y+i

(9)

where

β1 =
y+i + 1 − y+i

y+i + 1 − y+i − 1

, β2 =
y+i − y+i − 1

y+i + 1 − y+i − 1

(10)

The FD and FDG distributions are plotted for every analyzed pro-
file individually. The best fit values for the parameters appearing in
the log and the inner power law are determined. For this purpose,
the FD is bracketed in the region of±0.5%. This procedure ensures
that any a priori assumptions concerning any Reynolds number de-
pendency of the parameters and the boundaries of the validity of the
laws are excluded. The FDG distributions are used as an additional
validation of the results obtained from the FD distributions.

Note that an FD of±0.5% does not imply that the experimental
data are accurate to within this rather narrow range. In fact, for
a particular data point, the experimental error appears in both the
numerator and denominator of the equation defining the FD, and
hence, its direct effect is normalized out of the FD. Applied to the
same data set, the FD will show a preference, if one exists, toward
the log law or power law regardless of the level of experimental
error. This of course assumes that the data are not totally random,
and a reasonable experimental error, for example, less than±5%,
should be readily tolerated.

The results of our analysis using the method of FD are highlighted
in the next section. Complete listing of the data we used as well as
the FD computations are available online at URL:<http://www.tu-
dresden.de/mw/ism/sm/∼forschung/TBL.htm>.

IV. The Evidence
To illustrate the method of FD, we use two data sets gener-

ated byÖsterlund,15 one atReθ = 2.532× 103 and the other at
Reθ = 2.0258× 104. Österlund et al.16 advocated a modified ver-
sion of the classical log law, whereas Barenblatt et al.,17 using the
same data, advocated a power law. Herein, we compute the FD for
the velocity and its gradient by seeking the best values for the con-
stants appearing in the two respective laws. We also compute FD and
FDG for the inner and outer power laws as determined by Barenblatt
et al.17 The results are shown in Fig. 2. Because of numerical dif-
ferentiation, the FDG values are, as expected, considerably larger
than the FD values.

When the FD distributions of the log law and the inner power law
are compared, it immediately becomes clear that these laws do not
cover the samey+ region of the classical overlap zone. However,
a y+ region can be identified where both of them show similarly
small FD values. In this common region, it is not possible to decide
directly from the FD or FDG plots which law is to be preferred.
This region will be called the common region (COR). Its extent and
location obviously depend on Reynolds numberReθ .

A small region directly below the COR is not well represented
by the inner power law. Here, the log law matches the experimental
data better. Therefore, this region will be called pure log region
(PLR). On the other hand, ay+ region directly above the COR is
better fit by the inner power law than by the log law. For that reason,
this region will be called pure power region (PPR). These findings
are confirmed by the FDG plots. They are also consistent with the
results of asymptotic analysis conducted by Panton.25

The extent of the complete power law region (COR plus PPR)
partly covers the wake zone of the velocity profile. From this out-
come two conclusions can be drawn:

1) Because the wake zones of a turbulent boundary layer, a
pipe flow, and a channel flow are different, any relationα(Re) and
Cpow(Re) that has been derived from one type of flow cannot be used
for another type of flow.

2) The usual approach for the wake zone, in case the classical log
law is assumed, requires a wake parameter. This wake parameter is a
function of Reynolds numberReθ (for example, see Gad-el-Hak and
Bandyopadhyay10). Any other function including the inner power
law that is used for the description of this region should also display
this dependency.

A truer test for the method of fractional difference is to ap-
ply the strategy to several independent data sets, none of which
is our own. Six sets of mean-velocity profiles from indepen-
dent teams obtained by performing experiments or by using
DNS are analyzed here. The test cases include 109 velocity pro-
files and cover a range of momentum-thickness Reynolds num-
bers between 5× 102 and 2.732× 104. Table 1 is a summary
of all of the data analyzed.15,26−29 Note that Österlund15 pro-
vides the most comprehensive data set extending over a very
wide range of Reynolds numbers. These data are also avail-
able online at URL:<http://www2.mech.kth.se/∼jens/zpg/>. The
DNS data of Spalart29 and the hot-wire results of Roach and
Brierley28 are both available in online ERCOFTAC databases at
URL: <http://ercoftac.mech.surrey.ac.uk/>.

In both numerical and physical experiments, the uncertainty
in measuring the mean velocity is typically better than±2%,
whereas wall shear stress is measured or computed to within±5%.
Österlund15 used oil-film interferometery and reports skin-friction
accuracy better than±4%, whereas Osaka et al.27 used a floating el-
ement to measure directlyτ and claims an accuracy of±1–2%.
Roach and Brierley28 utilized Clauser’s method, the momentum
balance approach, and a Preston tube. They report that the val-
ues of the skin friction as measured by all three methods agree to
within 2%.

A word about the process by which we selected the specific data
sets to be analyzed herein. First, we searched for recently published
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a)

b)

c)

d)

Fig. 2 Data from Österlund.15 a) FD plots at Reθ = 2.532×× 103, b) FDG plots at Reθ = 2.532×× 103, c) FD plots at Reθ = 2.0258×× 104, and d) FDG
plots at Reθ = 2.0258×× 104: ¥, log law using individually determinedκ and Clog; ¤, power law using individually determinedα and CPow; 4, inner
power law according to Barenblatt et al.18; andN, outer power law according to Barenblatt et al.18

Table 1 Analyzed sets of velocity profiles of zero-pressure-gradient
turbulent boundary layers

Number of Reynolds Symbol Symbol
velocity numberReθ for log for inner

Data set profiles Probe range,×103 law power law

Meinert26 6 SHWa 2.442–6.167 H
Österlund15 70 SHW 2.53–27.32 ¥
Osaka et al.27 14 SHW, XWb 0.86–6.04 N
Choic 1 SHW 1.14 ?

Roach and 16 SHW 0.5–2.7 •
Brierley28

Spalart29 2 DNS 0.640, 1.41 ¨
aSingle hot-wire probe.
bX-wire probe.
cPrivate communication, Sept. 1999, Udine, Italy.

boundary-layer data covering a broad range of Reynolds numbers,
with an eye on the reliability and credibility of both the researchers
who generated the data and the archival journals that published the
results. Preference was given to experiments in which the wall skin
friction was measured or computed independently of any assump-
tion of the law governing the overlap region and to publicly avail-
able computerized data sets. Second, we excluded pipe and channel
flow data, such as those from the recent superpipe experiments at
Princeton University.30 Unlike zero-pressure-gradient boundary lay-
ers, fully developed pipe flows do not continue to evolve downstream
and do not possess a freestream. Last, we felt that six independent
data sets were quite adequate to show all of the trends sought. There-
fore, many good data sets were not included. A graph with 50 data
sets will look needlessly cramped, and our selection decision by no
means should be construed as a verdict against any of the excluded
data, some of which are considered classical albeit unavailable in
the form of computer files.

As already mentioned, no preference can be given in relation to the
COR. To confirm this finding, simple statistical tests were applied.

It is assumed that the FD values of each individual velocity profile
have a certain probability distribution. The mean of this distribution
should be zero if the correct law is applied. In that case, the scatter
of the FD values is only caused by experimental error. If a wrong
law is applied, the mean of the FD values will significantly deviate
from zero.

In Fig. 3, the mean of the FD values of every individual profile
analyzed is shown for different Reynolds numbers. Each velocity
profile was fitted to both a log law and a Barenblatt-type17,18 inner
power law regardless of what the original authors have advocated
in their own analysis of the same data. The key to all symbols in
Figs.3–5 may be found in Table 1, gray symbols for the log-law data
and black ones for the power-law data. For both laws, a remarkable
collapse of the data on a horizontal line is observed in the COR
(Fig. 3b). Again, no preference can be derived for one of the laws in
this region. In the PLR only the log law and in the PPR only the inner
power law show mean values of about zero throughout the entire
Reynolds numberReθ interval, as shown in Figs. 3a and 3c, respec-
tively. As expected, the laws show their superiority or inferiority in
their preferred region. Although not shown here, these findings are
supported by the variance in the FDG distributions.

In Fig. 4, the parameters that have been derived from fitting the
data to either the log law or the inner power law are plotted. All four
parameters are Reynolds number dependent but to various degrees.
Whereas the coefficientCpow and the powerα are Reynolds number
dependent throughout the entire Reynolds number interval inves-
tigated, the parameters of the log law seem to reach constant val-
ues withκ = 0.384 andClog= 4.171 aboveReθ ≈ 10× 104. These
asymptotic values are very close to the values found byÖsterlund
et al.,16 who advocated a log law but only abovey+ ≈ 200 and for
Reθ exceeding 6× 103 (so that a measurable overlap region could
exist). TheÖsterlund et al. values areκ = 0.38 andClog= 4.08.
However, it is also found that theα andCpow values derived here
from Österlund’s15 data are in good agreement with the equivalent
values derived directly by Barenblatt et al.,17 who fitted the same
data to an inner power law.
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a)

b)

c)

Fig. 3 Mean of FD distributions (see Table 1) for a) PLR, b) COR, and
c) PPR.

It is very interesting to compare the boundaries and extent (the
distance between the inner and outer boundary where FD does not
exceed±0.5%) of both the log law and the inner power law. These
are shown in Fig. 5, both in inner and outer variables, as function
of the momentum-thickness Reynolds number. In Figs. 5a and 5c,
the boundaries of the log region (PLR and COR) and the power
region (COR and PPR) are emphasized in inner and outer vari-
ables, respectively. In Figs. 5b and 5d, the extent of both regions are
emphasized in inner and outer variables, respectively. The bound-
aries in inner variables clearly indicate that the region where the
log law or power law is valid is located at different positions within
the profile. Almost throughout the entire Reynolds numberReθ in-
terval, the boundaries of the inner power law are located above
the corresponding boundaries of the log law (Figs. 5a and 5c). All
boundaries move away from the wall as the Reynolds number in-
creases. However, this movement is different for both laws above
Reθ ≈ 4× 103. Whereas the boundaries of the inner power law con-
verge, the boundaries of the log law diverge. The reason for the latter
is that the outer boundary of the log law grows faster than the cor-
responding boundary of the inner power law. On the other hand, the
inner boundary of the log law grows only very slowly, whereas the
inner boundary of the inner power law increases rapidly. The extent
of the log region (PLR plus COR) clearly reflects this behavior. Al-
though it is smaller than the extent of the inner power law (COR plus

PPR), the log-law region is growing faster than the power-law region
(Fig. 5b).

Figures 5c and 5d using outer variables indicate a more compli-
cated picture. The inner boundaries of both laws are almost the same
for Reθ < 1× 104. Above this Reynolds number, the inner boundary
of the log law becomes almost constant, whereas the corresponding
boundary of the inner power law starts to move away from the wall.
For Reθ < 4× 103, the outer boundaries of both laws move toward
the wall as the Reynolds number increases. When the Reynolds
numberReθ exceeds 4× 103, the outer boundaries move away from
the wall. Whereas this tendency lasts for the log law up to the high-
est Reynolds number investigated, the outer boundary of the inner
power law becomes almost constant forReθ > 1× 104. The effect
of this behavior is that the extent of the log law keeps growing,
whereas the power law shows a constant extent (Fig. 5d).

From classical theory, it is known that the log law should be the
asymptotic behavior of all inner layers.25 When it is assumed that the
inner power law describes the inner layer of the boundary layer, then
the envelope of all individual curves of the inner power law should
be a log function. The existence of such an envelope was first shown
by Barenblatt.14 This can be checked by calculating the envelope
using the computedCpow(Reθ ) distribution andα(Reθ ) distribution.
To do this, the inner power law is rewritten as follows:

F
(
y+, u+,Reθ

) = Cpow(Reθ )× (y+)α(Reθ ) − u+ (11)

The points of the envelope(y+E , u
+
E) are then obtained from

F
(
y+, u+,Reθ

) = 0,
∂F
(
y+, u+,Reθ

)
∂Reθ

= 0 (12)

by eliminating Reynolds numberReθ .
Data fromÖsterlund15 were used for this test. After very care-

fully smoothing theCpow(Reθ )andα(Reθ )distributions, the gradient
formulation for nonequidistant discrete distributions [Eq. (9)], was
applied to obtain the gradients

∂α(Reθ )

∂Reθ
,

∂Cpow(Reθ )

∂Reθ
(13)

All pairs (y+E , u
+
E) that were found outside the accompanying indi-

vidual power region (COR plus PPR) were eliminated as erroneous.
From the original 70 velocity profiles, 56 pairs of(y+E , u

+
E)were ob-

tained and compiled in Fig. 6. Indeed, these points follow a straight
line in the semilog plot. A corresponding curve fit leads to the con-
stantsκE = 0.365 andCE = 3.339. A comparison of the log law
obtained byÖsterlund et al.16 and the envelope shows that they lie
very close together, as indicated in Fig. 6. Nevertheless, note that
the log law and the envelope found here are not a priori identical.
Whereas the log law is a description of the mean-velocity profile
derived from a limiting process matching inner and outer series ex-
pansions, the envelope is a mathematical feature of the power law
derived from experimental data. The log law is obtained for large
but finite Reynolds numbers. The envelope is valid for the entire
range of Reynolds numbers investigated herein.

The FD and FDG plots shown in Fig. 2 also show results for the
outer power law according to Barenblatt et al.18 For these distribu-
tions, only the original parameters (power and coefficient) given by
Barenblatt et al. were used. The evidence that the inner and outer
power laws do not match comes mainly from the FD plots. A sig-
nificant y+ gap exists between these laws. This gap cannot be seen
if only the usual semilog plot is utilized. Moreover, only three or
four points are covered with the outer power law. When it is kept in
mind that this power law has two degrees of freedom, then at least
two points of the mean-velocity profile should be captured with high
accuracy. A third or a fourth point in between those two or next to
them may be captured accidentally. These features may indicate that
the outer power law, as conceived by Barenblatt et al.18 is a kind of
curve fit with no physical universality.

V. The Verdict
An impartial analysis concerning the modeling of the mean-

velocity profile of the canonical turbulent boundary layer was under-
taken. Based on an objective evaluation of experimental and DNS
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a)

b)

c)

d)

Fig. 4 Parameters of log law and power law obtained by using FD method (see Table 1); indicated average values forκ and Clog computed by
Österlund et al.16

a) c)

b) d)

Fig. 5 Boundaries and extent of log region and power region (see Table 1): a) boundaries of log region (PLR and COR) and power region (COR and
PPR), dimensionlessy in inner variables; b) extent of log region and power region, dimensionlessy in inner variables; c) boundaries of log region and
power region, dimensionlessy in outer variables; and d) extent of log region and power region, dimensionlessy in outer variables.

results, arguments of supporters of the log law on one side and sup-
porters of the power law on the other side were examined. To ensure
maximum objectivity, no data taken by the present authors were
included. The results are summarized in the following four points
and schematically shown in Fig. 7:

1) Neither the log law nor the inner power law is valid throughout
the entire overlap region. The examined data do not indicate any
statistically significant preference toward either law in the common

region where the FDs of the mean-velocity profile for the log and
power laws are of the same order.

2) Below the COR, a zone exists where the log law reproduces
the experimental data better than the power law. Above the COR, a
zone is found where the power law is in better agreement with the
experimental data.

3) The envelope of the individual curves of the inner power law
is a log function. The COR mentioned earlier can be understood
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Fig. 6 Envelope of individual power law curves of the data set by
Österlund15: ———, envelope and- - - -, log law according to Österlund
et al.16

Fig. 7 Schematic of different regions of mean-velocity profile of canon-
ical tubulent boundary layer: gray line, log law; and black line, inner
power law.

as the region where the inner power law departs from this
envelope.

4) There is no second power law region in the wake zone of the
profile. A much better fit of the data in the outer region of the profile
can be obtained by using a wake function that is added to the inner
power law to complete the profile.12,31

Using Poincar´e expansions and asymptotic matching,
Buschmann and Gad-el-Hak32 recently advanced a generalized log
law that includes higher-order terms involving the von K´armán num-
ber and the dimensionless wall-normal coordinate. The new law is
theoretically supported by the Lie-group analysis of Oberlack.33

Buschmann and Gad-el-Hak convincingly demonstrate the superi-
ority of the generalized log law over the classical log law or the
Reynolds number dependent power law.

How should an experiment be designed to learn more about the
correct description of the mean-velocity profile? We offer five sug-
gestions:

1) It is not necessary to go to higher and higher Reynolds numbers
because all effects can already be seen using profiles with moderate
Reθ of about 1× 104.

2) The mean-velocity profile and the wall skin friction should be
measured independently and directly.

3) The experimental technique used should make allowances for
the fact that the difference between the log law and the power law
is very small. It is found here that1u+ is about 0.4(1u+/u+ ≈ 1–
2%) for a profile withReθ ≈ 1× 104, when PLR, COR, and PPR are
taken into account.

4) To ensure that wall-normal gradients can be computed with
high accuracy, the mean profile should be taken equidistantly iny.

5) To allow more sophisticated statistical analysis, as much data
as possible should be taken in the region of interest.

In closing, existing data covering a wide range of Reynolds num-
bers support the log law and power law with equal measure through-
out most of the overlap region. Advocates of either law should look
elsewhere to resolve their conflict, peacefully. This court is now
adjourned.
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