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There has been considerable controversy during the past few years concerning the validity of the classical log law
that describes the overlap region of the mean-velocity profile in the canonical turbulent boundary layer. Alternative
power laws have been proposed by Barenblatt, Chorin, George, and Castillo, to name just a few. Advocates of either
law typically have used selected data sets to foster their claims. The experimental and direct numerical simulation
data sets from six independent groups are analyzed. For the range of momentum-thickness Reynolds numbers of
5x 10°-2.732x 10%, the best-fit values are determined for the “constants” appearing in either law. Our strategy
involves calculating the fractional difference between the measured/computed mean velocity and that calculated
using either of the two respective laws. This fractional difference is bracketed in the regiod=0.5%, so that an
accurate, objective measure of the boundary and extent of either law is determined. It is found that, although the
extent of the power-law region in outer variables is nearly constant over a wide range of Reynolds numbers, the
log-region extent increases monotonically with Reynolds number. The log law and the power law do not cover
the same portion of the velocity profile. A very small zone directly above the buffer layer is not represented by
the power law. On the other hand, the inner region of the wake zone is covered by it. In the region where both
laws show comparable fractional differences, the mean and variance were calculated. From both measures, it is
concluded that the examined data do not indicate any statistically significant preference toward either law.

I.  The Opening Arguments describes the mean streamwise velocity in the overlap region be-
T HE Reynolds numbers encountered in many practical situations tween the inner and outer layers of any wall-bounded flow and is
are typically several orders of magnitude higher than those the best known result of the stated classical idea.

studied computationally or even experimentally. High-Reynolds- ~ The log law has been derived independently by Ludwig Prandtl
number research facilities are expensive to build and operate, ang@nd G. I. Taylor using mixing length arguments, by Theodore von
the few existing are heavily scheduled with mostly developmen- Karmén using dimensional reasoning, and by Clark B. Millikan
tal work. For traditional wind tunnels, additional complications Using asymptotic analysis. Those names belong of course to the
are introduced at high speeds due to compressibility effects and revc_sre(_j giants of our field. Questioning the fundamental tenet or its
probe-resolution limitations near walls. Likewise, full computa- derivatives is, therefore, tantamount to heresy. However, the ques-
tional simulation of high-Reynolds-number flows is beyond the tions and doubts linger as evidenced from the work of Simpson,
reach of current capabilities. Understanding of turbulence and mod- Malkus? Barenblatf Long and CheriWei and Willmarth? George
eling will, therefore, continue to play a vital role in the computa- €t al.} Bradshaw, Purushothamah,and Smitt, among others,
tion of high Reynolds number practical flows using the Reynolds Who at different times challenged various aspects of this law. There
averaged Navier—Stokes equations. Because the existing knowl-iS strong suspicion, among the sacrilegists at least, that Reynolds
edge base, accumulated mostly through physical as well as numernumber effects persist indefinitely for both mean velocity and,
ical experiments, is skewed toward the low Reynolds numbers, the Mmore pronouncedly, higher-order statistics and, hence, that true self-
key question in modeling high-Reynolds-number flows is what the Preservation is never achieved in a growing boundary layer. In fair-
Reynolds number effects are on the mean and statistical turbulencen€ss to the high priests, their log law was always intended to be a
quantities. very high-Reynolds-number asymptote. These issues are discussed

One of the fundamental tenets of boundary-layer research is thein greater details by Gad-el-Hak and BandyopadHfay.
idea that, for a given geometry, any statistical turbulence quantity ~More recently, Barenblatt et &.and George and Castiffoboth
(mean, rms, Reynolds stress, etc.) measured at different facilitiesquestioned the infallibility of the log law. To be sure, the two teams
and at different Reynolds numbers will collapse to a single univer- tackle the same problem quite differently and independently. Both
sal profile when nondimensionalized using the proper length and Papers offer concrete alternatives to the Reynolds number indepen-
velocity scales. (Different scales are used near the wall and awaydent law of the wall. Barenblatt et Hluse scaling laws that invoke a
from it.) This is termed self-similarity or self-preservation and al- ~ zero-viscosity asymptote, whereas George and Cdsiitiwoduce
lows convenient extrapolation from the low-Reynolds-number labo- Newtools they term asymptotic invariance principle and near asymp-
ratory experiments to the much higher-Reynolds-number situations totic, which result in a new law of the wall with explicit Reynolds
encountered in typical field applications. The universal log profile number dependence. Wosnik et-dlsed those new tools and as-
o serted that the inhomogeneity of a boundary layer in the streamwise
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attempting to provide concrete information for the designers of,
for example, ships, submarines, and aircraft, heavily rely on sim-
ilarity principles to model the turbulence quantities and circum-
vent the well-known closure problem. Because practically all
turbulence models are calibrated to reproduce the law of the wall in
simple flows, failure of this universal relation virtually guarantees
that Reynolds averaged turbulence models would fail too.

During the past few years, the debate between the log- and power-

law camps has intensified. Advocates of either law typically have
used selected data sets plotted in a certain way to foster their claims
In the present research, we use the method of fractional differ-
ence to analyze the experimental and direct numerical simulation
(DNS) data sets from six independent groups for a large range of

momentum-thickness Reynolds numbers. None of the data sets or
the contested laws is our own, and the present analysis should pro-

vide an objective, impartial measure of the validity of either law.

Il. The Debate

The controversy surrounding the validity of the classical log law
has been intensified considerably during the past few yéars.
The decibel level of a recent shouting match (Barenblatt Btaad
Osterlund et at°) has been particularly unsettling. Entire sessions
during recent AIAA, American Physical Society, and American So-

ciety of Mechanical Engineers meetings have been devoted to the

controversy. The IUTAM Symposium on Reynolds Number Scal-
ing in Turbulent Flows (Princeton, NJ, Sept. 2002), where a second
shouting match took place, has been dominated by the debate.

A very simple way to derive the classical log law is to recognize
the two-scale nature of the turbulent boundary layer. Close to a
smooth wall, the inner region, viscosity is important, and the proper
velocity and length scales are, respectively, the friction velagity
and the viscous length scale (or wall unitju., wherev is the
kinematic viscosity and, = /(t,,/p), wherez,, is the shear stress
at the wall andp is the fluid density. Sufficiently far from the wall,
the outer region, inertia is important there and the proper velocity

and length scales are, respectively, the velocity outside the shear

layerUy and the boundary-layer thickne&sAn overlap region is
presumed to exist for distances from wigll, <« y <« §, or roughly,
and empirically, fromy =30v/u, to y =0.25. Note that the higher
limit of this range expressed in wall units is typically a few hundreds
at the typical laboratory Reynolds numbers and a few thousands
at the typical field Reynolds numbers. Dimensional reasoning or
asymptotic analysis yields the log law for the mean-velocity profile
in the overlap region. Written in terms of the inner variables, that
is, the usual )* notation, the log law reads
Uﬁ;g = (1/K)l7’fl(y+) + Ciog 1
whereu(x, y) is the mean streamwise velocity and the variikén
constank and the intercep;oq are usually assumed independent of
Reynolds number. The same log law can also be written in terms of
the outer variables. If this log law were valid, then experimental data
of the mean-velocity profile plotted in a semilog diagram should lie
on a straight line over the entire overlap zone as shown generically
in Fig. 1a. The normalized gradient of the velocity is given by
+
GL= Kdi = i
dyt y*
and should be represented by a straight line with a slopeloin
the double-log diagram shown in Fig. 1c.
The genesis of the power law is a mere curve fitting of the form

®)

where the coefficienC,,y and the powew are generally assumed
Reynolds number dependent (Schlichtf)gSreenivasai argues
that, although the power law originally used by engineers to de-
scribe the mean-velocity profile has been discredited by scientists
since Millikar?® derived the log law from asymptotic arguments,

@)

u;ow = Cpow(y+)a
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Fig. 1b Mean-velocity profile in a double-log plot.
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Fig. 1c Normalized gradient of the log law in a double-log plot.
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Fig. 1d Normalized gradient of the inner power law in a double-log

plot.

law in the overlap region. An additional power law for the region
between the outer boundary of the first power law and the outer
edge of the boundary layer was suggested by Barenblatt&Tal.
avoid confusion, the first mentioned power law will be termed inner
power law and the second one outer power law. Herein, we focus on

the basis for the power law is a priori as sound as that for the log the inner power law suggested by Barenbtatt If the power law

law, particularly at low Reynolds numbers. Barenblatt et @nd
George and Castill8 offer competing theories to derive the power

were valid, then data concerning the mean-velocity profile should

lie on straight lines in the double-log plot as shown for the inner
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power law in Fig. 1b. The normalized gradient The results of our analysis using the method of FD are highlighted
. in the next section. Complete listing of the data we used as well as
_ 1 1 du” _ 1 (4) the FD computations are available online at URdhttp://www.tu-
aCpow (YH)* dy+ yt dresden.de/mw/ism/smforschung/TBL.htrs-.

should also lie on a straight line with a slope-af in the double-log .
plot shown in Fig. 1d. IV. " The Evidence

Advocates of either law typically use plots similar to those in ~ To illustrate the method of FD, we use two data sets gener-
Fig. 1 to foster their claims. The quality in relation to the way ated byOsterlund’®> one atRe, =2.532x 10° and the other at
a particular law describes the mean-velocity profile has not been Re =2.0258x 10*. Osterlund et al® advocated a modified ver-
investigated systematically. An unbiased quality analysis applied Sion of the classical log law, whereas Barenblatt et’alising the
evenly to both the log and the power laws is needed. Furthermore, Same data, advocated a power law. Herein, we compute the FD for
if one of the laws is to be preferred, then the analysis of a large the velocity and its gradient by seeking the best values for the con-
amount of independent data should show that. This is the strategystants appearing in the two respective laws. We also compute FD and
adapted herein using a rather simple tool for statistical analysis, the FDG for the inner and outer power laws as determined by Barenblatt

fractional difference, to be described next. et all” The results are shown in Fig. 2. Because of numerical dif-
) ) ferentiation, the FDG values are, as expected, considerably larger
Ill.  Method of Fractional Difference than the FD values.

The fractional difference (FD) of the mean-velocity profile is ~ When the FD distributions of the log law and the inner power law
the related difference between the experimental and the theoreticalare compared, it immediately becomes clear that these laws do not

value ofu* at the sameg* position cover the sameg™ region of the classical overlap zone. However,
ay* region can be identified where both of them show similarly
FDiog% = 100x [1— (U, /ude) ] (5) small FD values. In this common region, it is not possible to decide

directly from the FD or FDG plots which law is to be preferred.

FDpow% = 100 x [1 — (u:)row/u;rxp)] (6) This region will be called the common region (COR). Its extent and

location obviously depend on Reynolds numBey.
Analogousto this, the FD ofthe gradient (FDG) of the mean-velocity A small region directly below the COR is not well represented

profile is constructed thus: by the inner power law. Here, the log law matches the experimental
data better. Therefore, this region will be called pure log region
11 (dut) " (PLR). On the other hand, w" region directly above the COR is
FDGog% = 100x | 1 -~ oo ) better fit by the inner power law than by the log law. For that reason,
y V" exp this region will be called pure power region (PPR). These findings

are confirmed by the FDG plots. They are also consistent with the

0 a1 [ QUT -t results of asymptotic analysis conducted by Pagton.
FDGow% = 100x | 1 — aCpon(y™) dy* ®) The extent of the complete power law region (COR plus PPR)
exp partly covers the wake zone of the velocity profile. From this out-

come two conclusions can be drawn:

1) Because the wake zones of a turbulent boundary layer, a
pipe flow, and a channel flow are different, any relagqiRe and
Cpow(R® that has been derived from one type of flow cannot be used
for another type of flow.

2) The usual approach for the wake zone, in case the classical log
law is assumed, requires a wake parameter. This wake parameter is a
function of Reynolds numbdte (for example, see Gad-el-Hak and
Bandyopadhyay)). Any other function including the inner power
law that is used for the description of this region should also display

The FD is computed independently for all laws under consid-
eration, regardless of which law the original authors might have
contemplated. The smaller the FD is, the better the experimental
data reproduced by the law applied. If one of the laws show signif-
icantly smaller FD or FDG values in a certain region of the profile,
then this law should be preferred there.

Special attention is given to the determination of the gradient
of the mean-velocity profile from experimental data. Most of these
data are taken nonequidistantly yri so that a weighted gradient
formulatior?* more accurately represents the true gradient. Thus,

this dependency.

du+t ut —u, U, — U A truer test for the method of fractional difference is to ap-
av Bi— — T Ba— o 9) ply the strategy to several independent data sets, none of which

y b/ (N Yiv1 =Y is our own. Six sets of mean-velocity profiles from indepen-

where dent teams obtained by performing experiments or by using
DNS are analyzed here. The test cases include 109 velocity pro-
AT yr -y, files and cover a range of momentum-thickness Reynolds num-

1= VWL P2 = YooV, (10)  pers between & 10 and 2732x 10°. Table 1 is a summary

of all of the data analyzetf2®-2° Note that Osterlund® pro-

The FD and FDG distributions are plotted for every analyzed pro- vides the most comprehensive data set extending over a very
file individually. The best fit values for the parameters appearing in wide range of Reynolds numbers. These data are also avail-
the log and the inner power law are determined. For this purpose, able online at URL<http://www2.mech.kth.sefjens/zpgt. The
the FD is bracketed in the region #0.5%. This procedure ensures DNS data of Spalaft and the hot-wire results of Roach and
that any a priori assumptions concerning any Reynolds number de-Brierley?® are both available in online ERCOFTAC databases at
pendency of the parameters and the boundaries of the validity of theURL: <http://ercoftac.mech.surrey.ac.wk/
laws are excluded. The FDG distributions are used as an additional In both numerical and physical experiments, the uncertainty
validation of the results obtained from the FD distributions. in measuring the mean velocity is typically better th&2%,

Note that an FD 0f£0.5% does not imply that the experimental ~whereas wall shear stress is measured or computed to witsfib.
data are accurate to within this rather narrow range. In fact, for Osterlund® used oil-film interferometery and reports skin-friction
a particular data point, the experimental error appears in both the accuracy better thah4%, whereas Osaka etZlused a floating el-
numerator and denominator of the equation defining the FD, and ement to measure directly and claims an accuracy af1-2%.
hence, its direct effect is normalized out of the FD. Applied to the Roach and Brierle¥} utilized Clauser's method, the momentum
same data set, the FD will show a preference, if one exists, toward balance approach, and a Preston tube. They report that the val-
the log law or power law regardless of the level of experimental ues of the skin friction as measured by all three methods agree to
error. This of course assumes that the data are not totally random,within 2%.
and a reasonable experimental error, for example, less-58m, A word about the process by which we selected the specific data
should be readily tolerated. sets to be analyzed herein. First, we searched for recently published
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Fig. 2 Data from Osterlund.’® a) FD plots at Rey =2.532x 10°, b) FDG plots at Rey =2.532x 103, ) FD plots atRey =2.0258x 10%, and d) FDG
plots at Rey =2.0258x 10*: W, log law using individually determined « and Ciog; O, power law using individually determined o and Cpow; A, inner
power law according to Barenblatt et al18; and A, outer power law according to Barenblatt et al'8

Table 1 Analyzed sets of velocity profiles of zero-pressure-gradient It is assumed that the FD values of each individual velocity profile
turbulent boundary layers have a certain probability distribution. The mean of this distribution
Number of Reynolds Symbol Symbol should be zero if t_he correct law is applied_. In that case, the scatter
velocity numbeRe, forlog for inner of th_e FD \_/alues is only caused by experlm_ent_al error. If a wrong
Data set profiles Probe  rangel0® law power law Ifaw is applied, the mean of the FD values will significantly deviate
rom zero.
Meiner¢® s 6 SHWA  2.442-6.167 ¥ v In Fig. 3, the mean of the FD values of every individual profile
8§;ek';“2tda?7 1?1 SH?A|/-“;<V\AP 3'22:27622 : : analyzed is shown for different Reynolds numbers. Each velocity
ChoF : 1 SHW “l14 . " profile was fitted to both a log law and a Barenblatt-typéinner
Roach and 16 SHW 0527 e . power law regardless of what the original authors have advocated

Brierley? in their own analysis of the same data. The key to all symbols in
Spalar® 2 DNS 0.640, 1.41 Figs.3-5 may be found in Table 1, gray symbols for the log-law data
. - and black ones for the power-law data. For both laws, a remarkable
pSingle hot-wire probe. collapse of the data on a horizontal line is observed in the COR

X-wire probe. . . . .
CPrivate communication, Sept. 1999, Udine, Italy. (Fig. 3b). Again, no preference can be derived for one of the laws in
this region. Inthe PLR only the log law and in the PPR only the inner
power law show mean values of about zero throughout the entire
boundary-layer data covering a broad range of Reynolds numbers,Reynolds numbeRe, interval, as shown in Figs. 3a and 3c, respec-
with an eye on the reliability and credibility of both the researchers tively. As expected, the laws show their superiority or inferiority in
who generated the data and the archival journals that published thetheir preferred region. Although not shown here, these findings are
results. Preference was given to experiments in which the wall skin supported by the variance in the FDG distributions.
friction was measured or computed independently of any assump- In Fig. 4, the parameters that have been derived from fitting the
tion of the law governing the overlap region and to publicly avail- data to either the log law or the inner power law are plotted. All four
able computerized data sets. Second, we excluded pipe and channgiarameters are Reynolds number dependent but to various degrees.
flow data, such as those from the recent superpipe experiments alWhereas the coefficie,,, and the powes are Reynolds number
Princeton Universit;?PUnIike zero-pressure-gradientboundarylay- dependent throughout the entire Reynolds number interval inves-
ers, fully developed pipe flows do not continue to evolve downstream tigated, the parameters of the log law seem to reach constant val-
and do not possess a freestream. Last, we felt that six independenties withk = 0.384 andCj,q=4.171 aboveRe ~ 10x 10*. These
data sets were quite adequate to show all of the trends sought. Thereasymptotic values are very close to the values foun®bterlund
fore, many good data sets were not included. A graph with 50 data et al.® who advocated a log law but only aboyé ~ 200 and for
sets will look needlessly cramped, and our selection decision by no Rg exceedlng 6< 10° (so that a measurable overlap region could
means should be construed as a verdict against any of the excludeaxist). TheOsterlund et al. values are=0.38 andC,y =4.08.
data, some of which are considered classical albeit unavailable in However, it is also found that the and Cy,,, values derived here
the form of computer files. from Osterlund'$® data are in good agreement with the equivalent

As already mentioned, no preference can be givenin relation to the values derived directly by Barenblatt et Hl.who fitted the same

COR. To confirm this finding, simple statistical tests were applied. data to an inner power law.
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2 PPR), the log-law region is growing faster than the power-law region
(Fig. 5b).

Figures 5c¢ and 5d using outer variables indicate a more compli-
cated picture. The inner boundaries of both laws are almost the same
for Rg < 1 x 10*. Above this Reynolds number, the inner boundary
of the log law becomes almost constant, whereas the corresponding
boundary of the inner power law starts to move away from the wall.
ForRe < 4 x 10%, the outer boundaries of both laws move toward
the wall as the Reynolds number increases. When the Reynolds
numberRe exceeds 4 10, the outer boundaries move away from
2 the wall. Whereas this tendency lasts for the log law up to the high-

400 1000 2000 4000 10000 20000 est Reynolds number investigated, the outer boundary of the inner
Reg power law becomes almost constant R > 1 x 10*. The effect
of this behavior is that the extent of the log law keeps growing,
whereas the power law shows a constant extent (Fig. 5d).
2 From classical theory, it is known that the log law should be the
asymptotic behavior of allinner layetf$When it is assumed that the
inner power law describes the inner layer of the boundary layer, then
1 the envelope of all individual curves of the inner power law should
be alog function. The existence of such an envelope was first shown
by Barenblatt* This can be checked by calculating the envelope
using the compute@,..(Re) distribution andx(Re) distribution.
To do this, the inner power law is rewritten as follows:

F(y".u".Re) = Crou(Re) x (yH)*R® —ut  (11)

M s L8 L} A8
SRS 40 e

a)

MFD 0l &

2 The points of the envelopg/?, uf) are then obtained from
400 1000 2000 4000 10000 20000
dF (y*,u*,Re)

Reo F(y*, u",Re) =0
b) (y ’ ’ Q)) ’ Rg
by eliminating Reynolds numb&s,.
2 . '\l Data fromOsterlund® were used for this test. After very care-
¥ Lﬁ fully smoothing theCp,ow(R&) andx (Re) distributions, the gradient
i formulation for nonequidistant discrete distributions [Eq. (9)], was
applied to obtain the gradients

I‘ :
2 da(Re) anow(Rea)
oRg ’ IReg
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All pairs (y£, uf) that were found outside the accompanying indi-
vidual power region (COR plus PPR) were eliminated as erroneous.
2 From the original 70 velocity profiles, 56 pairs@f:, uf) were ob-
400 1000 2000 4000 10000 20000 tained and compiled in Fig. 6. Indeed, these points follow a straight
Rey line in the semilog plot. A corresponding curve fit leads to the con-
) stantskg = 0.365 andCg = 3.339. A comparison of the log law
obtained byOsterlund et at® and the envelope shows that they lie
very close together, as indicated in Fig. 6. Nevertheless, note that
the log law and the envelope found here are not a priori identical.
Whereas the log law is a description of the mean-velocity profile
It is very interesting to compare the boundaries and extent (the derived from a limiting process matching inner and outer series ex-
distance between the inner and outer boundary where FD does nopansions, the envelope is a mathematical feature of the power law
exceedt0.5%) of both the log law and the inner power law. These derived from experimental data. The log law is obtained for large
are shown in Fig. 5, both in inner and outer variables, as function but finite Reynolds numbers. The envelope is valid for the entire
of the momentum-thickness Reynolds number. In Figs. 5a and 5c, range of Reynolds numbers investigated herein.
the boundaries of the log region (PLR and COR) and the power The FD and FDG plots shown in Fig. 2 also show results for the
region (COR and PPR) are emphasized in inner and outer vari- outer power law according to Barenblatt et&For these distribu-
ables, respectively. In Figs. 5b and 5d, the extent of both regions aretions, only the original parameters (power and coefficient) given by
emphasized in inner and outer variables, respectively. The bound-Barenblatt et al. were used. The evidence that the inner and outer
aries in inner variables clearly indicate that the region where the power laws do not match comes mainly from the FD plots. A sig-
log law or power law is valid is located at different positions within  nificanty™ gap exists between these laws. This gap cannot be seen
the profile. Almost throughout the entire Reynolds nuntRerin- if only the usual semilog plot is utilized. Moreover, only three or
terval, the boundaries of the inner power law are located above four points are covered with the outer power law. When it is kept in
the corresponding boundaries of the log law (Figs. 5a and 5c¢). All mind that this power law has two degrees of freedom, then at least
boundaries move away from the wall as the Reynolds number in- two points of the mean-velocity profile should be captured with high
creases. However, this movement is different for both laws above accuracy. A third or a fourth point in between those two or next to
Re ~ 4 x 10°. Whereas the boundaries of the inner power law con- them may be captured accidentally. These features may indicate that
verge, the boundaries of the log law diverge. The reason for the latterthe outer power law, as conceived by Barenblatt &% &l.a kind of
is that the outer boundary of the log law grows faster than the cor- curve fit with no physical universality.
responding boundary of the inner power law. On the other hand, the .
inner boundary of the log law grows only very slowly, whereas the V. The Verdict
inner boundary of the inner power law increases rapidly. The extent  An impartial analysis concerning the modeling of the mean-
of the log region (PLR plus COR) clearly reflects this behavior. Al- velocity profile of the canonical turbulent boundary layer was under-
though itis smaller than the extent of the inner power law (COR plus taken. Based on an objective evaluation of experimental and DNS

Fig. 3 Mean of FD distributions (see Table 1) for a) PLR, b) COR, and
c) PPR.
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Fig. 5 Boundaries and extent of log region and power region (see Table 1): a) boundaries of log region (PLR and COR) and power region (COR and
PPR), dimensionlesy in inner variables; b) extent of log region and power region, dimensionlesgin inner variables; c) boundaries of log region and
power region, dimensionlesy in outer variables; and d) extent of log region and power region, dimensionlesgin outer variables.

results, arguments of supporters of the log law on one side and sup-region where the FDs of the mean-velocity profile for the log and
porters of the power law on the other side were examined. To ensurepower laws are of the same order.

maximum objectivity, no data taken by the present authors were 2) Below the COR, a zone exists where the log law reproduces
included. The results are summarized in the following four points the experimental data better than the power law. Above the COR, a
and schematically shown in Fig. 7: zone is found where the power law is in better agreement with the

1) Neither the log law nor the inner power law is valid throughout experimental data.

the entire overlap region. The examined data do not indicate any 3) The envelope of the individual curves of the inner power law
statistically significant preference toward either law in the common is a log function. The COR mentioned earlier can be understood
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35 In closing, existing data covering a wide range of Reynolds num-
bers support the log law and power law with equal measure through-
30 out most of the overlap region. Advocates of either law should look
/,/ elsewhere to resolve their conflict, peacefully. This court is now
25 — adjourned.
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