Reynolds number effects in wall-bounded turbulent flows
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This paper reviews the state of the art of Reynolds number effects in wall-bounded shear-flow turbulence,
with particular emphasis on the canonical zero-pressure-gradient boundary layer and two-dimensional
channel flow problems. The Reynolds numbers encountered in many practical situations are typically orders
of magnitude higher than those studied computationally or even experimentally, High-Reynolds number
research facilities are expensive to build and operate and the few existing are heavily scheduled with mostly
developmental work. For wind tunnels, additional complications due to compressibility effects are
introduced at high speeds. Full computational simulation of high-Reynolds number flows is beyond the
reach of current capabilities. Understanding of turbulence and modeling will continue to play vital roles in
the computation of high-Reynolds number practical flows using the Reynolds-averaged Navier-Stokes
equations. Since the existing knowledge base, accumulated mostly through physical as well as numerical
experiments, is skewed towards the low Reynolds numbers, the key question in such high-Reynolds number
modeling as well as in devising novel flow control strategies is: what are the Reynolds number effects on the
mean and statistical turbulence quantities and on the organized motions? Since the mean flow review of
Coles (1962), the coherent structures, in low-Reynolds number wall-bounded flows, have been reviewed
several times. However, the Reynolds number effects on the higher-order statistical turbulence quantities
and on the coherent structures have not been reviewed thus far, and there are some unresolved aspects of the
effects on even the mean flow at very high Reynolds numbers, Furthermore, a considerable volume of
experimental and full-simulation data have been accumulated since 1962, The present article aims at further
assimilation of those data, pointing to obvious gaps in the present state of knowledge and highlighting the
misunderstood as well as the ill-understood aspects of Reynolds number effects.
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pipe radius or channel half-width

longitudinal phase velocity

1
local skin-friction coefficient = 1,, / ( — pUg )
2

skin-friction value for negligible freestream

turbulence

typical eddy lengths along x, y, and z

vortex diameter

dissipation of turbulence kinetic energy

drag reduction with respect to reference (unaltered) case
energy

bursting frequency, Hz

freestream turbulence parameter = {[u‘ / Uo] / [(La /8)+ 2]}
freestream turbulence parameter modified by a damping factor

= fsﬁn
flatness factor (or kurtosis) of streamwise velocity fluctuations

() ()

flatness factor of normal velocity fluctuations
Clauser's velocity-profile shape parameter

8 2 & 3
- J’ (&Ui) dy/_[ (UOU“U]dy
T T
0 0

riblet height
shape factor =68 *19
wavenumber

spanwise wavenumber

mixing length or hot-wire length

size of largest eddies in the flow

longitudinal dissipation length-scale in the freestream
freestream Mach number

root-mean-square value of the pressure fluctuations
production of turbulence kinetic energy

two-dimensional spetrum = P (k;' _,0)+)
twice the turbulence kinetic energy

shear correlation coefficient = —uv / (urmsUrms)

channel or pipe Reynolds number based on
centerline velocity and channel half-width or radius

a critical value of Re above which the turbulence structure

changes

Reynolds number based on plate length and freestream
velocity

turbulence Reynolds number = u'LA/
surface-length Reynolds number = U_x/v

vortex Reynolds number = ['/v
momentum-thickness Reynolds number = U_6/

Re*

@

SU

S(au/dr)

T
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ratio of outer length-scale (3 or a) to inner length-scale U
(8% or a™is also used to notate same quantity)

spanwise spacing of V-groove riblets

skewness factor of streamwise velocity fluctuations =

(“-3—)/ (“rms)3

skewness factor of normal velocity fluctuations

skewness factor of velocity derivative with respect to time
time

bursting period

freestream turbulence intensity = urms/ U,

components of velocity fluctuations along x, y, and z,
respectively

root-mean-square value of the streamwise velocity fluctuations
time-mean (kinematic) Reynolds shear stress

mean velocity within the boundary layer in the x-direction
centerline velocity in pipe or channel

local friction velocity = (‘l:“/p)ll 2

velocity at edge of shear layer

freestream velocity in boundary layer

universal wake function

longitudinal, surface normal, or spanwise coordinates,

respectively

focation of peak Reynolds stress

damping factor = [1 +3 e—(Re9/425)]

intermittency factor

circulation per unit length of a vortex sheet

total circulation in a vortex tube

boundary-layer thickness

displacement thickness

strength of the wake component in wall units

change in skin friction due to freestream turbulence
momentum thickness

appropriately normalized transverse distance in a wake flow )
von Kérman’s constant

Taylor’s micro-scales or wavelengths along x, y, z, respectively
coefficient of dynamic viscosity

kinematic viscosity = wp

density

wall-shear stress = u(@U/dy),,

power spectrum of turbulent velocity or Reynolds stress

fluctuations

radian frequency =2 nif

0, 0, 0, components of vorticity fluctuations along x, ¥, and 2

Q. Qv. €, mean vorticity components along x, y and z

Subseripts:

max maximum value

ref reference (unaltered) case

rms root mean square

w variable computed at wall

T value based on the shear stress at the wall
o0 freestream condition
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Superscript:

+ non-dimensionalized with wall-layer scales, viz UT for
velocity, v/U_for length, and v/UT2 for time
root-mean-square (rms) value

1. INTRODUCTION

1.1 Field versus laboratory flows

It is difficult to overstate the technological importance of
the turbulent wall-bounded flow. Vast amount of energy is
spent in overcoming the turbulence skin-friction drag in
pipelines and on air, water and land vehicles. For blunt
bodies, eg, trucks and trains, the pressure drag resulting
from boundary layer separation can be several orders of
magnitude higher than the skin friction, and even more en-
ergy is wasted. Heat transfer and mixing processes crucially
depend on the turbulent trangport for their efficient attain-
ment, The Reynolds numbers encountered in many practical
situations are typically orders of magnitude higher than
those studied computationally or even experimentally (Fig
1). Yet, our knowledge of high-Reynolds number flows is
very limited and a complete understanding is yet to emerge.
The existing knowledge base, accumulated mostly through
physical as well as numerical experiments, is clearly
skewed towards low Reynolds numbers. For many practical
applications the key question is then what are the Reynolds
number effects on the mean and statistical turbulence
quantities and on the organized motions of turbulence? One
always hopes that the flow characteristics become invariant
at sufficiently high Reynolds number. That merely shifts the
question to what is high enough?

Consider the simplest possible turbulent wall-bounded
flow, that over a smooth flat-plate at zero incidence to a
uniform, incompressible flow or its close cousin the two-
dimensional channel flow. Leaving aside for a moment the
fact that such idealized flow does not exist in practice,
where three-dimensional, roughness, pressure-gradient, cur-
vature, wall compliance, heat transfer, compressibility, stra-
tification, and other effects might be present individually or
collectively, the canonical problem itself is not well un-
derstood. Most disturbing from a practical point of view are
the unknown effects of Reynolds number on the mean flow,
the higher-order statistical quantities and the flow structure.
The primary objective of the present article is to review the

Re,

S
Typical lab ) .
or DNS National Transonic {;ﬁ;}r}l{gley towing Super pipe
Facility
Flight/Ship

Atmeosphere

Fig 1. Ranges of momentum-thickness Reynolds number for different
facilities and for field conditions.

Gad-el-Hak and Bandyopadhyay: Wall-bounded turbulent flows 309

state of the art of Reynolds number effects in wall-bounded
shear-flow turbulence, with particular emphasis on the ca-
nonical boundary iayer and channel flow problems.

1.2 Reynolds number

Reynolds number effects are intimately related to the con-
cept of dynamic similarity. In a given flow geometry, if L
and U are the length and velocity scales, respectively, the
non-dimensional equation of motion for an effectively in-
compressible fluid is given by:

O (6. V)il =~VP+ V20 ()
Ot Re

where Re = ULA, P is pressure and v is kinematic viscosity.
This seemingly superficial non-dimensionalization reveals
two important properties. The first is the concept of dyna-
mic similarity. No matter how L, U, and v are varied, as
long as Re is the same in two geometrically similar flows,
they have the same solution. Small-scale model testing of
large-scale real-life flows is based on this property.
Secondly, for a given geometry and boundary condition, the
effect of changing L, U, or v, or any combination of them,

)

Energy (E)

* * Wave Number (k)
Large Small @)
Eddy Eddy
El
A A K
La'rge SrLall (b)
Eddy Eddy

Fig 2. Energy spectra at low and high Reynolds numbers: (a) Low Reynolds
number; (b) High Reynolds number
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can be described uniquely by the change of Re alone.
Although, the importance of Re was recognized earlier by
Stokes, it has come to be termed Reynolds number in recog-
nition of Osborne Reynolds’ telling demonstration of its
effect on the onset of turbulence (Reynolds, 1883). Even
today, the laminar-to-turbulent transition is one of the most
dramatic Reynolds number effects and its rational computa-
tion continues to be a research challenge.

Equation 1 shows that Re represents the relative impor-
tance of viscous and inviscid forces. Since three forces, viz
inertia, pressure, and viscous, are in equilibrium, the bal-
ance can be described by the ratio of any two, although it
has become customary to characterize the flow by the ratio
of inertia to viscous forces.

In this paper, only turbulent flows are considered be-
cause they are widely prevalent. The recent report by
Bushnell ef al (1993) treats Reynolds number similarity and
scaling effects in laminar and transitional flows. The un-
derstanding of the effects of Reynolds number relies on our
understanding of viscous forces. For a wall-bounded flow,
this is true no matter how high the Reynolds number is.
Experience shows that there is no practical Reynolds num-
ber where the no-slip boundary condition, which owes its
origin to viscous effects, switches off. Since the net viscous
force on an element of incompressible fluid is determined
by the local gradients of vorticity, the understanding of the
vorticity distribution is the key to determining Reynolds
number effects. Vorticity can be produced only at a solid
boundary and cannot be created or destroyed in the interior
of a homogeneous fluid under normal conditions.

The qualitative effects of Reynolds number on the scales
of turbulence are demonstrated in the two velocity-fluctua-
tions spectra depicted in Fig 2. The large scale is only
weakly dependent on Reynolds number (Townsend, 1976).
However, as Reynolds number increases, the small scales
become physically smaller (larger wavenumbers) and the
diversity of intermediate scales between the large and small
increases. In terms of organized motions in a turbulent
boundary layer, the effect of Reynolds number on the om-
nipresent elongated vortex loops (horseshoes) is as sketched
in Fig 3, from Head and Bandyopadhyay (1981). With in-

creasing Reynolds number, the aspect ratio of the constitu- .

ent hairpin vortices increases while the vortices become
- skinnier. The related result, viz. the relative shrinking of the
inner layer where viscous effects are stronger is shown in
the mean-velocity profiles depicted in Fig 4. Significantly,
the two flows have approximately the same boundary layer
thickness (13 ¢m). While the inner layer occupies most of

Flow |::>

Ba

(@ ®) ©
Fig 3. Qualitative effect of Reynolds number on features composing the
outer region of a turbulent boundary layer (from Head and Bandyopadhyay,
1981): (a)Vortex loop at very low Re; (b) Elongated loop or horseshoe at
low to moderate Re; (c) Hairpin or vortex pair at moderate to high Re.
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the boundary layer for the low-Reynolds number flow, it
shrinks to a very small proportion at high Reynolds number.

1.3 Outline of present review

In this article, the effects of Reynolds number on the mean
flow, coherent structures and statistics of turbulent bound-
ary layers and channel flows are reviewed. Published data
are re-examined in light of the following questions. (1)
Does the boundary-layer turbulence structure change after
the well known Reynolds number limit, viz when Rey >
6x103? (2) Is it possible to disturb a high-Reynolds number,
flat-plate turbulent boundary layer near the wall such that
the recovery length is O[1008]? (3) How close is the nu-
merically simulated low-Reynolds number, flat-plate turbu-
lence structure to that observed experimentally? The turbu-
lence structure appears to change continuously with
Reynolds number virtually throughout the boundary layer
and sometimes in unexpected manners at high Reynolds
numbers (Bandyopadhyay, 1991).

It is relevant to acknowledge in here two recent doctoral
theses by Kailasnath (1993) and Smith (1994), which came
to our attention after the bulk of the present paper was
written. Both dissertations address somewhat similar ques-
tions to those raised in here. Kailasnath (1993) amplifies on
the notion of scale similarity using a statistical approach for
obtaining valuable information on the structure of the in-
stantaneous momentum flux within laboratory as well as
atmospheric turbulent boundary layers. Smith (1994) em-
phasizes Reynolds number effects on the structural aspects
of boundary layers.

The present paper is organized into 11 sections.
Following the present introductory remarks, the contempo-
rary relevance of the general topic of Reynolds number ef-
fects and of the specific problems of flow control and post-
transition memory is given in Section 2. The different re-
gions of the boundary layer are reviewed in the following
section. Section 4 highlights the qualitative differences
between wall-bounded layers and free-shear flows.

Reynolds number effects on the mean flow and on higher-

(a)

(b)

J
S=

Fig 4. Mean-velocity profiles at low and high Reynolds numbers: (a) Reg =
2060; 5 = 887; 8 = 13.1 cm (from Kline et al, 1967); (b) Rey = 38,000; §*
= 17,350; § = 12.8 cm (from Tu and Willmarth, 1966).
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order statistics are given in Sections 5 and 6, respectively.
Outer and inner coherent structures and their interactions
are recalled in Section 7. Brief remarks are made on flow
control, numerical simulations, and non-canonical boundary
layers in the following three sections. Finally, concluding
remarks are given in Section 11.

2. CONTEMPORARY RELEVANCE

2.1 Primary issues

Most studies on the structure of flat-plate turbulent bound-
ary layers are being carried out at rather low Reynolds
numbers (Fig 1). The few existing high-Reynolds number
wind- or water-tunnels are expensive to build and operate
and are heavily scheduled with mostly developmental work.
Full computational simulation of high-Reynolds number
turbulent flows is beyond the reach of current computers.
Since many practical flows have very high Reynolds num-
bers, the question is how relevant are the low-Reynolds
number studies to practical situations? For this reason alone
the issue of Reynolds number effects is important. The
Reynolds number scaling laws are usually given by the
wall-layer, outer-layer, or any mixed-layer length, time, and
velocity scales which govern the variation of a mean or tur-
bulence quantity with Reynolds number,

The subject is too broad and here it is discussed mostly
in light of five questions. One of the earliest studies of the
Reynolds number effect in turbulent boundary layers was
due to Coles (1962). When measurements of mean-velocity
profiles were expressed in inner-layer form based on di-
rectly measured local friction values, a logarithmic region
was found to exist even at an Rey of 50x10%, where Rey is
the Reynolds number based on momentum thickness and
freestream velocity. The wall-layer variables appear to de-
scribe the mean flow in the inner layer universally in flat
plates, pipes, and channels at all Reynolds numbers.

On the other hand, in a boundary layer, the behavior of
the outer layer, when expressed in terms of wall-layer vari-
ables by the strength of the wake component AU*, which is
the maximum deviation of the mean-velocity profile from
the log law, appeared to reach an asymptotic value for Re,
> 6x10°. Above.this limit, the inner- and outer-layer mean
flows are expected to reach an asymptotic state which the
turbulence quantities are also hypothesized to follow. This
is, however, not the case since the wake component starts
decreasing, albeit slowly, at about Re; > 15x10°. This raises
the question, does the mean flow ever achieve true self-
preservation?

The situation is murkier for higher-order statistics,
Measurements in pipes (Morrison et al 1971), channels
(Wei and Willmarth 1989), and boundary layers
(Andreopoulos et a/ 1984; Erm ef al 1987) are beginning to
show that the turbulence quantities do not scale with wall-
layer variables even in the inner layer. Therefore, the ques-
tion arises, can we apply the mean-flow scales to turbu-
lence?
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Furthermore, the outer-layer-device drag reduction ex-
periments of Anders (1990a) show that above this Reynolds
number limit, the maximum skin-friction reduction and the
recovery length (the latter with some exception) do not re-
main constant but reduce with increasing Reynolds number.
The loss of performance at higher Reynolds numbers is
puzzling and Anders attributed it to a significant change in
the turbulence structure, In this background, the question
does the turbulence structure change when Rey > 6x103, is
discussed.

Consider another puzzling high-Reynolds number behav-
ior, In the fifties, Clauser had experimentally shown that in
a turbulent boundary layer at a given Reynolds number,
disturbances survive much longer in the outer layer than in
the inner layer. He demonstrated this by placing a circular
rod in the outer and inner layers of a fully-developed wall
layer. In viscous drag-reduction techniques where a device
drag penalty is involved, a recovery length of O[1005] is
desirable to achieve a net gain. To date, with outer-layer
devices, such recovery lengths have been achieved only at
low Reynolds numbers as mentioned earlier. One normally
expects the recovery length to be far less if the disturbances
are applied near the wall, and the length to reduce even
more as Re, is increased. However, published data are re-
examined here which shows that, in fact, at higher Reynolds
numbers, an opposite trend sometimes takes place. This un-
expected result indicates a serious difficulty in the extrapo-
lation of low-Reynolds number results. The fourth question
is concerned with this aspect of the Reynolds number
effect. -

Spalart (1986) has numerically simulated a smooth flat-
plate turbulent boundary layer at Rey, = 300, 670, and 1410.
Robinson et al (1989) have analyzed the data base at Rey =
670 and identified the organized structures. In the last part
of the paper, the numerically obtained low-Reynolds num-
ber structures are compared with experimental observations.

2.2 Turbulence modeling

Full computational simulation of high-Reynolds number
turbulent flows is beyond the reach of current capabilities.
Understanding of turbulence and modeling will continue to
play vital roles in the computation of high-Reynolds num-
ber practical flows using the Reynolds-averaged Navier-
Stokes equations (Reynolds, 1895). The mean flow review
by Coles (1962) has had a great impact on turbulence
modeling. However, that article did not cover any tur-
bulence quantitics, Additionally, as will be discussed in
Section 3, the effects of Reynolds number on even the mean
flow at truly high Reynolds numbers {(momentum thickness-
based Reynolds number Rey 2 1.5x10%) are still, unfor-
tunately, not understood and are, surprisingly, even misun-
derstood and erroneously simplified.

After the work of Coles, interest in organized motion or
the so-called coherent structures, had increased. The coher-
ent structures of turbulent boundary layers, particularly for
low-Re flows, have been reviewed several times
(Willmarth, 1975a; 1975b; Willmarth and Bogar, 1977;
Blackwelder, 1978; Cantwell, 1981; Hussain, 1983; Fiedler,
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1986; Robinson, 1991). In these reviews, the kinematic
features of coherent structures are discussed but, the
Reynolds number dependence is by and large not covered.
Furthermore, although these developments have greatly im-
proved our understanding of the turbulence production
mechanism, their impact on turbulence modeling and flow
control have been minimal. The structural modeling works
. of Perry and Chong (1982), Nagano and Tagawa (1990),
and Bandyopadhyay and Balasubramanian (1993; 1994) are
exceptions and hold some promise.

The Direct Numerical Simulation (DNS) of turbulent
boundary layers have so far been carried out up to an Re, of
1410 (Spalart, 1986). Since the computational resource re-
quired varies approximately as the cube of the Reynolds
number, it would not be possible to simulate very high-
Reynolds number turbulent shear flows any time soon
(Karniadakis and Orszag, 1993). This has created a resur-
gence of interest in turbulence modeling particularly for
high-Reynolds number wall-bounded flows. Thus, there is a
need to review the state of the art of Reynolds number ef-
fects on the mean flow, turbulence statistics, and coherent
structures, so that the flow physics input to any new turbu-
lence model or flow control device is up to date. To be use-
ful to modeling or to flow management, seven requirements
of this review paper can be specified:

1. Evaluate the state of the art of aspects of the mean
flow at truly high Reynolds numbers left open by Coles
(1962).

2. Examine experimental and numerical simulation data
to determine the Reynolds number effects on conventional
statistical turbulence quantities, particularly those which
appear in the various forms of the Reynolds-averaged
Navier-Stokes equations.

3. Determine if the scaling laws of the mean flow apply
to the higher-order turbulence statistics as commonly
assumed.

4, Critically investigate the issues of post-transition
memory and probe resolution of existing turbulence meas-
urements, including such statistical quantities as root mean
square and spectrum,

5. Establish the state of the art of Reynolds number
effects on the coherent structures or organized motions,
while keeping an eye on the need of structural modeling.

6. Attempt to bridge the gap between the coherent struc-
ture flow physics and Reynolds-averaged quantities, and
thereby make the former useful to a practicing engineer.

7. Finally, it is more useful to review the mean flow, the
turbulence quantities and the organized motions in a unified
manner than to treat them separately. The advantage is that
it will then be possible to examine if the mean-flow scaling
laws can indeed be extrapolated to turbulence.

2.3 Flow contrtol and post transition memory

Apart from that in turbulence modeling, knowledge of the
Reynolds number effects is useful to flow control. This is
because experimental investigations at low Reynolds num-
bers, ie lower speeds and/or smaller length scales, are less
expensive. Most flow control devices are, therefore, devel-
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oped and tested at rather low speeds, Extrapolation to field
conditions is not always straightforward though, and it often
comes to grief. The relevance of Reynolds number effects
to flow control is particularly telling in case of full numeri-
cal simulation because it is currently limited to Reynolds
numbers that are not that far from transitional values.

One of the objectives of this review article is to highlight
the misunderstood and ill-understood aspects of the
Reynolds number effects. This should help guide flow con—r
trol, turbulence modeling research, and data gathering for
code validation in the right direction, Two examples would
serve to make the point,

In viscous drag reduction techniques where a device drag
penalty is involved, as with outer layer devices (OLD), a
recovery length ~1008 is desirable to achieve a net gain, As
indicated in Section 2.1, this does happen at low Re, (<
6x10%) (Anders, 1990a). However, when Anders exam?ned
his outer layer devices at higher Reynolds numbers, to his
surprise, the drag reduction performance was reduced and
the device was no longer a viable candidate for viscous drag
reduction. For both low Re, (< 6x103) and high (> 6x10%),
the effectiveness of OLD diminishes with the increase of
Reynolds number (Bandyopadhyay, 1986a; Anders, 1990a).

The continued drop in the drag reduction comes as a sur-
prise because the mean flow analysis of Coles (1962) indi-
cates an asymptotic state of the outer layer to have been
reached above Rey > 6x103. Anders attributed the irrepro-
ducibility of the low-Reynolds number behavior at higher
values to a significant change in the turbulence structure at
higher Re,. As discussed by Head and Bandyopadhyay
(1981), a continuous change in the ratio of the outer to the
inner layer, U /v, is observed even beyond Re, = 6x10°.
This also suggests that U 8/ may be more important to tur-
bulence production than the wake component AU,

The above example shows that the 1962 review work of
Coles is not always providing sufficient guidance on the
Reynolds number effects to the research application engi-
neer. The reason seems to be that our knowledge of the
Reynolds number effects on the mean flow is not enough
for many applications (and modeling), and that we also
need to know the Reynolds number effects on the turbu-
lence. Considerable amount of statistical mean and turbu-
lent flow data have come out of the experimental and nu-
merical simulations since 1962 and it would be useful to
review the state of the art.

That, being armed with the knowledge of Reynolds
number effects on the mean turbulent flow alone does not
allow one to address all practical problems, can be demon-
strated in the unexpected post-transition result reported by
Klebanoff and Diehl (1952). Their measurements on artifi-
cially thickened boundary layers (see Section 8.3.2 of the
present article) showed that the return to the “equilibrium”
state is slowed down as the reference Reynolds number is
increased and not decreased! This raises the question, are
the near-wall transition-trip disturbances surviving for in-
creasingly large x/0 as the Reynolds number is increased?
This question is clearly important to model testing and code
validation data, where roughness is used to trip and thicken
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the boundary layer to simulate high Reynolds numbers or
flight conditions. Thus, there is also a need to review avail-
able experimental data containing the Reynolds number de-
pendence of the distance up to which transition memory
survives,

3. FLOW REGIMES

An inspection of the distribution of viscous and turbulence
shear stresses in a typical wall-bounded flow demonstrates
the presence of three distinct regions. Figure 5, adapted by
Sreenivasan (1989) from the smooth-pipe-flow data of
Nikuradse (1932) and Laufer (1954), shows such distribu-
tion in wall units (friction velocity, U, = (t,/p)’2, used as
velocity scale, and the ratio of kinematic viscosity to
friction velocity used as length scale),

Pipe (or channel) flow data are preferable to flat-plate
boundary layer experiments since the Reynolds stress, a
rather difficult quantity to measure accurately, can be com-
puted exactly for fully-developed channel flows from the
relatively simple measurements of mean-velocity profile
and pressure gradient (see Section 6.2). The semi-log plot in
Fig 5 enhances the importance of the thin near-wall region
relative to the rest of the shear layer,

The broken line in the figure is the time-averaged vis-
cous stress distribution computed by differentiating the
mean-velocity profile. Note that this laminar flow concept
of shear may not be relevant to the time-dependent turbu-
lent flow, since turbulénce models based on the mean ve-
locity gradients have not been widely successful (eg,
Bradshaw ef al 1967). Nevertheless, it is clear from the fig-
ure that the mean viscous stress, u (8U/y), is important
only near the wall. This wall layer is followed by a region
of approximately constant Reynolds stress. Finally, an outer
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Fig 5. Distribution of viscous and turbulence shear stresses in wall-bounded
flows (from Sreenivasan, 1989).
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layer! is characterized by a diminishing turbulence shear
stress, reaching zero at the centerline of the pipe. Unlike the
second and third regimes, the extent of the first region does
not depend on Reynolds number, Both the viscous region
and the constant-Reynolds stress region are similar in all
wall-bounded flows. In contrast, the outer layer is different
in internal flows and boundary layers. Profiles of the mean
velocity and other turbulence statistics can be constructed
from scaling considerations of the three distinct regimes, as
will be seen in the following three subsections.

Note that the Reynolds number used as a parameter in
Fig 5 is defined as Re* = U.a/v; that is the channel half-
width (or boundary-layer thickness) expressed in wall units:
a* (or 8%). Although numerically Re* and 8* are the same,
their difference in significance and usage should be clari-
fied. The variable 8* denotes the ratio of the outer- to inner-
layer thickness, and represents the degree of shrinking of
the latter with respect to the former which changes little
with Reynolds number (see Fig 4). It emphasizes the dis-
parity of the two scales and the diversity of the intermediate
and interacting scales at higher Reynolds numbers. As will
be seen in Section 7, 8™ indicates the reduction of the hair-
pin vortex diameter and the increase in its aspect ratio as
the Reynolds number increases (Head and Bandyopadhyay,
1981). The value of 8* in a typical laboratory experiment is
0O[1000], while it approaches 100,000 in the boundary layer
developing over the space shuttle (Bandyopadhyay, 1990).
This variable is pertinent to the understanding of the
mechanism of drag reduction by outer-layer devices
(Anders, 1990b). On the other hand, Re* is a Reynolds
number, also called a stability parameter by Black (1968).
In Black's work and later in Sreenivasan's (1988), Re* indi-
cates a Reynolds number associated with the quasi-periodic
instability and breakup process that is hypothesized to be
responsible for the regeneration of turbulence in a wall-
bounded flow (Sections 4 and 7). Note that, for a smooth
wall, Re* increases monotonically with Re, and never
reaches an asymptote.

3.1 Viscous region

Viscosity appears to be important only up to y* = 30. The
viscous region can be subdivided into two subregions: the
viscous sublayer and the buffer layer (Fig 6). Very close to
the wall, 0 < y* < 5, the turbulence shear stress is nearly
zero which implies that the only relevant quantities there
are the kinematic viscosity v and friction velocity U,. % In
this viscous sublayer, several turbulence statistics can be
asymptotically estimated from considerations of the no-slip
condition and continuity and dynamical equations. Fol-
lowing Monin and Yaglom (1971) and using experimental
data, Sreenivasan (1989) gives the following Taylor’s series
expressions, in wall units, for the mean streamwise velocity,
for the root-mean-square value of the three fluctuating

L Called core region in internal flows.

2 por hydraulically rough walls, ie where the average roughness height is
greater than the viscous sublayer thickness, the relevant scaling para-
meters are the characteristic roughness neight and friction velocity.
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velocity components and for the Reynolds siress, re-
spectively:

Ut = oyt - Ix109yM + 16x106 5 + ... )
w*t = 03yt ey ©)
ot = 0.008y2+ ¢,y L., 4)
W= 007y ey )
W= 4x104 03 - 8x10°6 Yt + 6

For y* <5, the leading term of each of the above expan-
sions suffices. Note however that the experimentally de-
termined leading coefficients in Eqs 3-5 are lower than
those computed from direct numerical simulations.
Mansour et al (1988) analyzed the channel-flow data base
generated by Kim et al (1987) and reported the following
leading-term coefficients for u™, v"™* and w': 0.36, 0.0086,
and 0.19, respectively. The last coefficient in particular is
almost three times that of the corresponding leading term
determined experimentally. The reason might be due to the
rapid drop in the spanwise velocity fluctuations as the wall
is approached, so a very small hot-wire probe or LDV focus
would be needed to realize the true value.

With three terms, Eq 2 for the mean velocity is valid up
to y* = 20. Note that the constants in the above equations
are not necessarily universal. As will be discussed in

)

Wake region

0.26 (100»/Uz at Re, = 10°)
' (5500w/U; at Re, = 10°)
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(0.0015 at Re, = 10%)

Buffer layer

Sv/Uy

Viscous sublayer
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y =0 (wam
Fig 6. Schematic of the different regions within a wall-bounded flow at
typical low and high Reynolds numbers.
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Section 6, clearly discernible Reynolds number effects will
be demonstrated for all higher-order statistical quantities
even in the near-wall region.

The buffer layer is where both the viscous stress and the
turbulence shear stress are important, and is where the peak
production and dissipation of turbulence kinetic energy oc-
cur (at about y* = 12, seemingly independent of the global
Reynolds number). In here, the characteristic local
Reynolds number of y U/v = 30 is exceedingly low and
turbulence cannot be maintained unless buffeted constantly
by strong disturbances, presumably from the outer layer.
This region merges with the constant-Reynolds stress layer.

3.2 Constant-Reynolds stress region

This region, loosely interpreted? to include all points within
the - 3dB points of the peak Reynolds stress, extends from
y* =30 to y/a = 0.2, where q is the pipe radius. Here, the
distance from the wall y is much larger than the viscous
length-scale, v/U, , but much smaller than the pipe radius
(or the boundary layer thickness, 8, for an external flow).
Note that the upper extent of this region is a constant frac-
tion of the boundary layer thickness, but varies with
Reynolds number when expressed in wall units (see Fig 6).
In this region, viscous stresses are negligible and the
momentum flux is accomplished nearly entirely by turbu-
lence. The only relevant length scale is y itself, and the
square root of the nearly constant Reynolds stress,

(w0 max)'2, is the appropriate velocity scale. Therefore, the
mean-velocity gradient can be expressed as:

OU/DY ~ (—u max) 'y @

The well-known logarithmic velocity profile follows di-
rectly from integrating Eq 7 and using the velocity at the
edge of the viscous sublayer as a boundary condition:

Ut =(1/x) In(3*) + B ®)
where « is the von Kdrman constant. Both « and B are pre-
sumably universal constants and are determined empirically
for flat-plate boundary layers to be approximately 0.41 and
5.0, respectively. Slightly different values are used for the
two constants in the case of pipe or channel flows. In that
case, Eq 8 holds almost up to the centerline of the channel.
As the Reynolds number increases, the extent of the loga-
rithmic region (in wall units) increases and the maximum
Reynolds stress approaches the value of the viscous stress at

the wall (~u0max/U2 —> 1).

Several other methods can be used to derive the loga-
rithmic velocity profile. A mixing length, based on momen-
tum transport, that simply varies linearly with distance from
the wall, ¢ = k y, again yields Eq 8. Millikan's (1939)
asymptotic analysis recovers the log relation by assuming
the existence of a region of overlap where both the inner
and ocuter laws are simultaneously valid (see also the rarely
cited albeit relevant article by Izakson, 1937). All models
invariably rely on the presence of the constant-stress layer

3 Strictly speaking; the Reynolds stress is not really constant anywhere in a
pipe or channel flow. :
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Fig 7. Normalized turbulence kinetic energy production rate as a function of normal distance from the wall. Data for a typical laboratory flat-plate boundary

layer (from Kline et al, 1967).

experimentally observed at high Reynolds number. Despite
copious evidence for the existence of a logarithmic region
in the mean-velocity profile, the whole log-law scenario has
been periodically questioned (see, for example, Barenblatt,
1979; 1993; Malkus, 1979; Long and Chen, 1981; George et
al, 1992; 1994; Barenblatt and Prostokishin, 1993), We will
return to this point in Section 5.5.

The arguments used by Millikan (1939) to derive the
logarithmic relation for the boundary layer are analogous to
those employed to establish the universal equilibrium the-
ory of turbulence, called the theory of local similarity by its
originator Kolmogorov (1941a; 1941b; 1941¢; 1962). For
the boundary layer, an inertial sublayer exists at sufficiently
large Reynolds numbers and the overall flow dynarnics is
independent of viscosity, which merely provides a momen-
tum sink of prescribed strength at the wall, Similarly, an in-
ertial subrange exists in the turbulence energy spectrum
when the Reynolds number is large enough. There, the
wavenumber is larger than that for the large eddies but
smaller than the dissipative wavenumbers, The viscosity
again provides the dissipative sink for kinetic energy at the
small-scale end of the turbulence spectrum. The spectral
shape in the inertial subrange is completely determined by
the energy flux across the wavenumber domain.

Similar scaling arguments to those leading to Eqs 7 and
8 cax: be used in the constant-turbulent stress region to show
that:

4 The value of the constants in Eqs 9-12 are determined empirically from
mostly low-Reynolds number experiments. Again, Section 6 will reveal
that these constants depend in fact on the Reynolds number.

u' /U, = constant=2.0 ®)
v' /U, = constant = 1.0 (10)
w' /U, = constant = 1.4 (1)
Pey =Dgy =Ulky (12)

where Py and Dy, are the production and dissipation of
turbulence kinetic energy, respectively. Additionally, a
portion of the power spectrum for each of the three velocity
components exhibits a -1 power law in this same region
governed by a constant turbulence shear stress transmitted
across its different fluid layers.

The total stress is approximately constant throughout the
viscous layer and the constant-Reynolds stress region. This
is the so-called inner layer (see Fig 7) and for a smooth wall
the mean-velocity profile there is given by the unique
similarity law of the wall, first formulated by Prandtl
(1925).

U= (13)

where f is a universal function presumably independent of
Reynolds number and streamwise location. The inner law is
the same for both internal and external flows.

3.3 Outer layer

Beyond the constant-stress region, an outer layer is charac-
terized by a diminishing turbulence shear stress. Note that
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some researchers include the constant-Reynolds stress re-
gion as part of the outer region. This is perhaps an accurate
inclusion since .the part of the boundary layer where the
logarithmic law is valid is, strictly speaking, the region of
overlap between the inner and outer laws (see Fig 7). A

In internal flows, intermittency of turbulence and inter-
action with potential freestream are absent. There is, how-
ever, an interaction of turbulence from the opposite wall in
case of a two-dimensional channel and this is even more
complex in case of a circular pipe. Furthermore, fully-de-
veloped conditions for pipes and channels are defined as
that all time-averaged flow quantities (except static pres-
sure) are independent of x. Therefore, the core region of a
pipe or channel flow differs from the outer layer of a
growing boundary layer.

The appropriate length scale in the core region is the
pipe radius a (or the boundary-layer thickness, &, for an
external flow). The mean-velocity profile is characterized
by the velocity defect (U, - U), where U, is the velocity at
the edge of the shear layer (centerline velocity U, for a pipe
flow or freestream velocity U, for a boundary layer). The
velocity-defect (or, more appropriately, momentum-defect)
law, formulated by von Karmén (1930), is given by a sec-

- ond universal function:

(U,- U/, =g(yR)

This equation is valid even in the logarithmic region and
appears to be well confirmed experimentally,

For a turbulent boundary layer, Coles (1956) combined
the defect law and the inner law to give the following em-
pirical velocity profile valid throughout the entire wall-
bounded shear layer:

(14)

Convection

Gain
(+ve)

Lateral
Diffusion

Production

Energy

Loss
(-ve)

Fig 8. Turbulence energy balance in a typical plane wake (from Townsend,
1976).
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U* = fiv*) + (i) W(ls) (15)

where « is the von Karman constant and IT is a profile pa-
rameter that depends strongly on Re for small Reynolds
numbers. Coles’ idea is that a typical boundary layer flow
can be viewed as a wake-like structure which is constrained
by a wall, Intermittency and entrainment give rise to the
wake-like behavior of the outer part of the flow, which is
sensitive to pressure gradient and freestream turbulence.
The wall constraint is closely related to the magnitude of
the surface shear stress, and is sensitive to the wall rough-
ness and other surface conditions.

For equilibrium flows (Clauser, 1954), the profile pa-
rameter IT is independent of streamwise location. The uni-
versal wake function W(y/8) is the same for all two-dimen-
sional boundary-layer flows. Its form is similar to that de-
scribing a wake flow or more precisely the mean-velocity
profile at a point of separation or reaitachment. For exam-
ple, the wake function can be adequately represented by:

W()—]) =2 sin® [—R—X]
o 28

Note however that this simple expression obtained empiri-
cally by Coles (1969) does not yield zero velocity gradient
at the edge of the boundary layer, as it should. Lewkowicz
(1982) proposed an alternative quartic polynomial which
removes this deficiency.

At the same Reynolds number, deviation of the actual
mean-velocity distribution from the logarithmic profile in
the core region of a pipe or channel flow is smaller than
that in the outer region of a boundary layer. In fact, as
mentioned in Section 3.2, the logarithmic velocity profile,
Eq 8 with slightly modified constants x and B, holds ap-
proximately up to the centerline of the pipe.

(16)

4, COMPARISON TO OTHER SHEAR FLOWS

Before proceeding to investigate the specific effects of
Reynolds number on the mean and turbulence quantities of
wall-bounded flows, it is instructive to give a coarse com-
parison between such flows on the one hand and free-shear
flows on the other. As it will be illustrated, the presence of
the wall is of paramount importance to the issue at hand. No
matter how large the Reynolds number is, viscosity must be
important in a progressively shrinking region close to the
wall and Reynolds number dependence persists indefinitely.

Wakes, jets and mixing layers are profoundly different
from channel and pipe flows and boundary layers. The ab-
sence of the wall in free-shear flows implies that at suffi-
ciently high Reynolds numbers, the flow is nearly inviscid
and by implication Reynolds number-independent
(Dimotakis, 1991; 1993). For wall-bounded flows, on the
other hand, there is always a small, progressively shrinking
region near the surface where viscosity must be important,
no matter how large the Reynolds number is.

In boundary layers and channel flows, the overall behav-
ior and gross structure of turbulence is always affected by
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Fig 9. Mean streamwise velocity and mean spanwise vorticity. distributions in different shear flows (from Roshko, 1992).

viscosity near the wall, while the direct effect of viscosity
gradually diminishes away from the surface. This implies
that the velocity and length scales must be different near the
wall and away from it. The disparity of scales for wall-
bounded flows increases with Reynolds number and true
self-preservation may never be achieved, unless the inner
and outer scales are forced to be proportional at all
Reynolds numbers. This latter scenario can be realized, for
example, in the very special case of flow between two
planes converging at a prescribed angle.

In wall-bounded flows, very large levels of turbulent
fluctuations are maintained close to the wall despite the
strong viscous as well as turbulent diffusion, As indicated in
Fig 7, at a typical laboratory Reynolds number of say Rey =
O[103], more than about a third of the total turbulence ki-
netic energy production (and dissipation) occurs in the 2%
of the boundary-layer thickness adjacent to the wall. The
fraction of this thickness decreases as the Reynolds number
increases (Fig 4). The near-wall region is directly affected
by viscosity® and its importance to the maintenance of tur-
bulence is clearly disproportional to its minute size.

3 Through the action of viscous stresses for a smooth wall, or through the
action of pressure drag resulting from the separated flow around discrete
elements of sufficient size for rough walls.

The thinness of the viscous sublayer presents a great
challenge to both physical and numerical experiments,
Since this region is closest to the wall and is where drag
acts, it is extremely important at all Reynolds numbers. Yet
in contemporary direct numerical simulations, the viscous
sublayer of 5 wall units is resolved only up to 1.4 wall
units. In measurements, probe resolutions are even worse;
other than in low-Reynolds number or oil-channel ex-

periments, a probe length of ¢* < 7 is indeed rare
(Bandyopadhyay, 1991).

In free-shear layers, on the other hand, energy produc-
tion peaks near the inflection points of the mean-velocity
profile. Both production and dissipation are spread over the
entire flow width as shown in Fig 8 depicting the turbulence
energy balance for a typical two-dimensional wake. Above
a reasonably modest Reynolds number, O[10%], all turbu-
lence quantities become invariant to additional changes in
Reynolds number.

Despite these differences between boundary layers and
free-shear flows, there are also some similarities. The outer
region of a boundary layer is characterized by an intermit-
tent rotational/irrotational flow, much the same as that ob-
served in all free-shear flows. Moreover, the outer flow is
more or less inviscid at sufficiently high Reynolds numbers,
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again being similar to jets, wakes and mixing layers. The
interaction between the outer, or wake, region of a turbulent
boundary layer and the potential flow in the freestream is
also similar to that in wakes and other free-shear flows. The
above are observational similarities and differences be-
tween the wall-bounded turbulent flows and the free-shear
layers. In the following, they are compared based on dy-
namic issues like the applicability of an inflectional inviscid
breakdown mechanism, and it is shown that the subject is
still wide open.

Inviscid stability theory has been successfully used to
predict the observed coherent structures in turbulent free-
shear flows, but it is not clear that similar arguments can be
made when a wall is present. In other words, it is not obvi-
ous that the same inviscid, mean-flow breakdown mecha-
nism responsible for generating the large eddies in, say, a
mixing layer is operable in the case of a boundary layer.
Consider the mean streamwise velocity and mean spanwise
vorticity distributions sketched in Fig 9, from Roshko
(1992), for four different shear flows. A two-dimensional
mixing layer is modeled as a single vortex sheet placed at
the location of peak vorticity (at the point of inflection of
the mean-velocity profile). The local circulation per unit
length of the vortex sheet, y(x), is equal to the integral of
the mean spanwise vorticity, Q,, across the shear layer.

This vortex sheet is inviscidly unstable to two-dimen-
sional perturbations and the resulting Kelvin-Helmholtz in-
stability eventually evolves into the omnipresent two-di-
mensional vortices, observed even in high-Reynolds num-
ber mixing layers. The resulting vortex blobs correspond to
the saturation state of this instability, As indicated in the
sketch, circulation in the blobs is conserved, I'= y(x) Ax.
Secondary instabilities of the roll-up structures result in
smaller longitudinal vortices and other three-dimensional,
hairpin-like eddies.

Similar reasoning lead to the in-phase counter-rotating
vortices for plane jets and the staggered Karman vortex
street for two-dimensional wakes. As sketched in Fig 9,
both jets and wakes can be modeled as two vortex sheets
with opposite signs of vorticity. Again, each sheet is located
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Fig 10. Comparison of mean-velocity profiles with logarithmic law at low
Reynolds numbers. Boundary layer data from Purtell ef al (1981).
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at the location of spanwise vorticity extrema, and total cir-
culation is conserved.

For a turbulent wall-bounded flow, however, it is not
obvious that the observed large-eddy structures (Section 7)
can be derived using similar inviscid arguments. If the
boundary layer is modeled by a vortex sheet in which the
entire mean flow vorticity has been concentrated, the pres-
ence of the wall imposes a boundary condition that necessi-
tates the use of an image vortex sheet of opposite sign of
vorticity. Such considerations led Sreenivasan (1988) to
propose that the large eddies are the result of an instability
of a caricature of the real boundary layer. Two- and three-
dimensional instabilities, both inviscid and viscous, of this
caricature flow lead to a plausible explanation for many ob-
served features including the double-roller structures, hair-
pin eddies and low-speed streaks (see Section 7 of the pre-
sent article).

It turns out that a somewhat similar argument was ad-
vanced two decades earlier by Black (1968). He treats the
mean-flow breakdown as an intermittent, three-dimen-
sional, inviscid process, where a mechanism analogous to
the starting vortex of an impulsively started airfoil is in
play. He thereby successfully predicts the formation of an
array of hairpin vortices due to a passing instability wave,
Note that while Theodorsen (1955) predicted the formation
of hairpin vortices, the aspect of an array of them is absent
in his work. In Black’s work U_8/v appears as an important
stability parameter. Mention should also be made of the
waveguide theory developed by Landahl (1967; 1972; 1977;
1980; 1990) to explain the cause and effect relationships for
the variety of coherent structures observed in turbulent
boundary layers. p

In Sreenivasan's model a fat vortex sheet and its image
are located on either side of the wall at a distance corre-
sponding to the position of the peak Reynolds stress.
Because of the absence of inflection points in the interior of
the canonical turbulent flow, Sreenivasan (1988) chose the
alternative location of peak based upon experience with
transitional boundary layers.® From all available boundary
layer as well as channel flow data, this location appears to
scale with the geometric mean of the inner and outer scales.
Sreenivasan (1988) termed that position the critical layer,”
although any evidence for the existence of such a two-di-
mensional layer, where small perturbations are presumed to
grow rapidly, is lacking. Using linear stability theory,
Sreenivasan successfully showed that the primary instability
of the vortex sheet and its image yields two-dimensional
roll-up structures, which in turn excite low-speed streaks
and bursting. Subsequent instability of the roll-up structures
leads to hairpin eddies and double-roller structures. One
problem with this picture is that, unlike the case of free-
shear flows, the predicted two-dimensional structures have

6 Note that in the past, both Clauser (1956) and Corrsin (1957) have also

attempted to treat the turbulent regenerative process as primarily similar to
the breakdown mechanism of a critical laminar layer.
In a transitional wall-bounded flow, the location of peak Reynolds stress
coincides with the critical-layer position. Since this location shows similar
trends with Reynolds number to that in a turbulent flow (see the
lowermost two data points in Fig 34b), Sreenivasan (1988) chose to place
his proposed vortex sheet at this location.
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never been observed in an actual turbulent wall-bounded
flow. Sreenivasan (1988) himself allows that his simplistic
model is unfinished and has a number of weaknesses but of-
fers it as a target for useful criticism.

The arguments above indicate that the existence of an
inviscid breakdown mechanism responsible for the self-
sustenance of the turbulence has not been firmly estab-
lished. In other words, it is not clear that the observed co-
herent structures in a boundary layer or channel flow are the
result of an instability of the mean flow or its caricature.
Until this issue is resolved, progress in the understanding of
wall-bounded flows will remain lagging behind that of free-
shear flows. Despite the importance of this dynamical issue,
research on the organized nature of turbulent boundary lay-
ers has remained confined to the kinematics, and high-pay-
off turbulence control strategies are yet to be developed.

5. MEAN FLOW

Before investigating the issue of Reynolds number effects
on coherent structures, available data for the mean velocity
and higher-order statistics of wall-bounded flows are re-
viewed in the present and following sections. Section 5 fo-
cuses on the Reynolds number effects on the mean
streamwise velocity, and Section 6 discusses these effects
on rms velocity fluctuations, Reynolds stress, spectra,
skewness and flatness factors, and rms and spectrum of
wall-pressure fluctuations.

5.1 Streamwise velocity

The mean flow velocity in the streamwise direction is a
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relatively easy quantity to measure and almost every paper
on wall-bounded flows has such measurements (see, for ex-
ample, Preston and Sweeting, 1944; Laufer, 1951; Comte-
Bellot, 1965; Eckelmann, 1974; Purtell et al, 1981;
Andreopoulos ef al, 1984; and Wei and Willmarth, 1989),
Requirements for probe resolution are modest and, except
very near the wall, most published data are reliable to better
than 1%. This is obviously not the case for measurements of
higher-order statistics, and this point will be revisited in the
following section.

For a turbulent wall-bounded flow, the region directly af-
fected by viscosity, the viscous sublayer plus the buffer
layer, occupies progressively smaller proportion of the
boundary-layer thickness as the Reynolds number increases
(see Fig 6). The rest of the flow is dominated by inertia and
the effect of viscosity enters only as an inner boundary
condition set by the viscous region. It is not surprising,
therefore, that the Reynolds number has a considerable ef-
fect on the velocity profile. As Re, increases, the mean-ve-
locity profile becomes fuller and the shape factor, H, de-
creases accordingly. For example, at Rey = 2000, H = 141,
and at Rey = 10,000, H# = 1.33. The effect is even more pro-
nounced at Reynolds numbers lower than 2000. In a laminar
flat-plate flow, in contrast, viscosity is important across the
entire layer and the shape factor is independent of Reynolds
number.

Available data appear to indicate that the wall-layer
variables universally describe the streamwise mean velocity
in the inner layer of smooth flat plates, pipes and channels
at all Reynolds numbers. Figs 10-12 illustrate this for
boundary layers and channel flows for a wide range of
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Fig 11. Non-dimensionalized mean-velocity profiles at high Reynolds numbers. Boundary layer data from Andreopoulos ef al (1984).
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Reynolds numbers. The low-Reynolds number boundary
layer data of Purtell et a/ (1981) in Fig 10 indicate the pres-
ence of a logarithmic region for Rey as low as 500, This is

rather surprising considering that at this Reynolds number a
constant-stress region is virtually non-existent and the

maximum Reynolds stress is substantially less than U?Z,
However, in deriving the log law, Eq 8, the presumably
constant velocity-scale has a weak, square-root dependence
on the Reynolds stress. The extent of the log region, ex-
pressed in wall units, increases with Reynolds number but is
a constant fraction of the boundary layer thickness (Fig 6).

The single straight line in Fig 10 does not support
Simpson's (1970; 1976) claim that the law-of-the-wall, es-
pecially «, varies with Reynolds number,® nor the assertion
by Landweber (1953), Preston (1958) and Granville (1977)
that the logarithmic region disappears all together at low
Reynolds numbers. An important question is: What is the
minimum Re, at which a log region is first established?
Coles (1962) analysis of wake component indicates that it is
zero at Rey 600. The data of Bandyopadhyay and Ahmed
(1993) indicate that Clauser's outer-layer shape parameter,
G, reaches zero at Rey = 425, These can be regarded as two
indications of a minimum value, supporting the experimen-
tal findings of Purtell et al (1981) depicted in Fig 10.

At low Reynolds numbers, the large scales of the turbu-
lent fluctuations dominate its dynamics. The logarithmic
region appears to be an inherent characteristic of the turbu-
lent boundary layer and to be associated with the large ed-
dies. Because of the persistence of the log region to
Reynolds numbers just above transition, Purtell e a/ (1981)
suggest that the large-scale structures in the turbulent
boundary layer are related to, if not simply composed of,
the hairpin eddies produced during the final stages of lami-
nar-to-turbulent transition.

Andreopoulos et al (1984) provide mean-flow data for
higher Reynolds number boundary layers. Figure 11 depicts
their normalized data for the four Reynolds numbers Re, =
3624; 5535; 12,436 and 15,406. All three flow regimes de-
scribed in Section 3 are apparent in the different mean-ve-
locity profiles, Again, inner scaling appears to collapse the
data in the inner layer (viscous plus logarithmic regions)
onto a single curve. :

Similar results are observed in the channel flow data of
Wei and Willmarth (1989) depicted in Fig 12. Here the
Reynolds number is based on the centerline velocity and the
chapnel half-width and ranges from Re, = 2,970 to Re, =
39,582, As expected, the wake component in the mean-ve-
locity profiles of the channel flow is much weaker than that
in the boundary layer data.

5.2 Von Karman constant

As discussed in Section 5.1, provided that a log region does
indeed exist (see Section 5.5), Purtell et al's (1981) meas-

8Note, however, the observation by George et al (1993), discussed in
Section 5.5, that the superficial collapse in Purtell er al's (1981) data
results from @ priori assuming the existence of a log region and using the
velocity data to compute U
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urements in low-Reynolds number boundary layers confirm
that the law of the wall does not vary with Reynolds num-
ber, thus implying a truly constant value of the von
Kérmén's constant. Close to a decade earlier, Huffman and
Bradshaw (1972) analyzed the data from several other low-
Reynolds number experiments and arrived at the same
conclusion. At the other extreme, Grigson (1992) used
model and field data to show the constancy of x for
Reynolds numbers up to Re, = 4x10°. Both the low- and
high-Reynolds number results refute an earlier claim by
Simpson (1970) that the von Kdrman constant varies with
Reynolds number. Additionally, as illustrated below, a
rather simple kinematic argument can be invoked to support
the universality of « (Bandyopadhyay, 1991).

Based on two-point velocity-correlation measurements,
Townsend (1976) proposes the double-cone wall grazing
eddy as the prototypal coherent structure in the near-wall
region. This vortex, which satisfies the wall constraint, is
the attached analog to his double-roller eddy of free-shear
flows. The coherent structure is in contact with the wall
over its whole length and vortex stretching is ignored. Its
diameter must then be d = 2y, where y is the location of the
vortex center,

Of relevance here is Robinson's (1990) observation that
the near-wall streamwise vortices frequently detected in
low-Reynolds number direct numerical simulations have
mean diameters that vary with distance from the wall ac-
cording to the linear relation:

dt=xy" (17)

where d is the mean vortex diameter and k is the von
Kérman constant. Now, the simple-momentum-transport
model used in Section 3.2 to derive the log law assumes a
local mixing length that varies according to:

(18)

¢ =xy
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Fig 12. Mean-velocity profiles non-dimensionalized on inner variables.
Channel flow data from Wei and Willmarth (1989).
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This means that in the constant-Reynolds stress region,
d'={"=xy* (19)

Notice that ¢ reaches its maximum value at the end of
the constant-stress region, ie at (3/8) = 0.2, such that:

(ﬂ /S)max =% (y/s)top of log region =0.082

Thereafter ¢ is a constant throughout the rest of the
boundary layer. Although (¢ /5) . is independent of the

(20)

Reynolds number, it is clear that £, is not a constant, In

fact, £7,. is a strong function of the Reynolds number for
&* < 10% (Bushnell ef al, 1975).
If the near-wall region within which ¢ is first reached

is simply modeled to be composed of Townsend's double-
cone eddies, it is then encouraging that the von Karman
constant of 0.41 is within the value of the constant of
proportionality for the upper limit of the vortex size, viz 2.
The kinematic behavior supports the contention that x is
independent of Reynolds number and type of flow (pipe,
channel or boundary layer).

5.3 The illusory asymptotic state

While inner scaling appears to collapse wall-layer mean-~
flow data onto a single curve regardless of the Reynolds
number, the situation is not that simple in the outer layer.
As discussed in Section 3, Coles (1956) proposed to repre-
sent the entire mean-velocity profile in any two-
dimensional turbulent boundary layer by a linear superposi-
tion of two universal functions, the law of the wall and the
law of the wake. In fact, Coles suggested a simple extension
of his empirical law to represent even yawed and three-di-
mensional flows. Recall Eq 15:

Ut =fy*) + () W(lo)

The first term on the right hand side is valid for any smooth
wall-bounded flow, and available evidence appears to indi-
cate that the function f'is independent of Reynolds number,
pressure gradient, and freestream turbulence. This term
supposedly represents all mixing processes in the wall layer
governed primarily by viscosity. The wall constraint is felt
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Fig 13. Reproduction of Coles’ (1962) strength of the wake component in
equilibrium turbulent boundary layers at low Reynolds numbers.
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mainly in the viscous sublayer, the buffer layer and the log-
arithmic portion of the velocity profile. For rough walls,
particularly when the roughness is sufficiently pronounced,
the viscous length-scale is simply replaced by the character-
istic roughness height, For both smooth and rough walls, the
appropriate velocity scale is derived from the magnitude of
the surface shear stress.

The second term, representing tutbulent mixing proc-
esses dominated by inertia, is the product of the universal
wake function W{(y/5) and the ratio of the profile parameter
I to the von Karman constant k. The parameter IT depends
on the pressure gradient, the freestream turbulence and
whether the flow is internal or external, but is not directly
affected by wall conditions such as roughness, etc. For a
flat-plate boundary layer, the profile parameter increases
with Reynolds number but presumably asymptotes to a
constant value at high enough Re. This is illustrated in Fig
13, from Coles (1962), depicting the change of the maxi-
mum deviation of the mean velocity from the logarithmic
law, AU*, with Reynolds number. In here, the maximum
deviation, or the strength of the wake component, is ex-
pressed in wall units and the Reynolds number is based on
freesiream velocity and momentum thickness. The maxi-
mum Reynolds number shown is 15,000. Since the maxi-
mum deviation occurs close to the edge of the boundary
layer and since W()/3) has been normalized such that W(l)
= 2, the strength of the wake component is approximately
related to the profile parameter by:

AU =2 T/ @2n

It is clear that the strength of the wake depends upon the
somewhat arbitrary way in which the logarithmic portion of
the velocity profile is fitted, ie on the particular values of k
and B chosen.

Figure 13 shows that the strength of the wake component
reaches a constant value for Rey > 6,000, Coles (1962)
termed the flow at this high Reynolds number
“equilibrium,” which led to the wide spread perception that
the flow becomes independent of Reynolds number beyond
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Fig 14, Reproduction of Coles’ (1962) strength of the wake component at
large Reynolds numbers. ’
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this value. Unfortunately, when the plot in Fig 13 is ex-
tended to larger values of Reynolds numbers, it becomes
clear that the presumed asymptotic state is merely an illu-
sion. As shown in Fig 14, AU" starts decreasing again at
about Re, > 15,000, although very slowly compared to the
rise rate for Rey < 6,000. After excluding all data containing
certain anomalies, Coles (1962) was puzzled by the persis-
tent change in behavior and the variation between data sets
for Rey > 15,000. The drop can not be explained from ex-
perimental uncertainties such as those caused by probe cali-
bration problems, improper tripping devices, three-dimen-
sional effects, high levels of freestream turbulence and
pressure-gradient effects, and Coles left the issue open.

The rapid rise and the subsequent gradual fall of AU*
with Re, appear to be genuine and have been confirmed in
several other experiments as summarized by Mabey (1979).
The maximum AUY, reaghed at about Re, = 6000, is 2.7 for
subsonic flows (Smith and Walker, 1959) but is higher by
30% or more for supersonic flows (Lee et al, 1962; Hopkins
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4 a 1080
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Fig 15. Strength of the wake component versus Reynolds number on a
semi-log plot. Subsonic data of Smith and Walker (1959) at four different
downstream stations. Figure reproduced from Mabey (1979).
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Fig 16. Strength of the wake component versus Reynolds number on a
semi-log plot. Supersonic data of Mabey ef a/ (1976) at six different mach
numbers. Figure reproduced from Mabey (1979).
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et al, 1972; Mabey et al, 1976).

Smith and Walker's (1959) subsonic data, shown
previously in the top part of Fig 14, are replotted on a semi-
log scale in Fig 15, for four different measuring stations.
The forward station, x = 400 mm, shows a different trend as
compared to the three downstream locations. Using the two
curves fitted to the data in Fig 15, Mabey (1979) analyzed
the effects of the variation of the wake component with
Reynolds number on skin-friction and total drag predic-
tions. These are important parameters when extrapolating
model tests to actual vehicle configurations. The curve
marked W, = 1.8 corresponds to a constant wake compo-
nent of 1.8 above Re, = 5600, but falls to zero at Re, = 600.
The second curve marked W, = 2.8 peaks at Re; = 5600, but
drops at higher and lower Reynolds numbers. Particularly at
low Re,, the skin-friction computed from the first curve fits
the law-of-the-wall estimates, while predictions based on
the second curve fit the directly measured drag better.

The supersonic data of Mabey et al (1976) are depicted
in Fig 16, where there seems to be no significant variation
with Mach number. Despite artificial tripping, the boundary
layer was laminar or transitional for Re, < 600, and no
wake component can be extracted from the velocity pro-
files. As in the subsonic case, Mabey (1979) used the two
fitted curves in Fig 16 to analyze the effects of the variation
of the wake component with Reynolds number on skin-fric-
tion,

The Reynolds number effect on the mean flow can also
be verified independently from Clauser's shape parameter:

8 2 8
o-] (L2 /[ (%]
UT UT
0 0
where U(y) is the velocity profile and U, is the velocity at
the dege of the boundary layer, y = 8. Bandyopadhyay
(1992) compiled the findings of several recent experiments
to show the variation of G with Re, . The results are shown
in Fig 17, and include the high-aspect ratio® data of Anders
(1989). The trend parallels that of AU*. The value of G first
rises rapidly with Re, and then drops gradually. Figure 17
also corrects the loose notion found in the literature that G
varies between 6.5 and 7.5,

(22)

5.4 Is self-preservation ever achieved?

At approximately Req > 15x103, the gradual departure of
AU* from the apparent low-Re, asymptote suggests that
some new effects are gradually appearing in the tarbulence
production process. A new, lower asymptote appears to
have been reached when Re; = 50,000, but the boundary
layer might also continue to change indefinitely as the inner
and outer scales are forever disparting. The paucity of high-
Reynolds number reliable data makes it difficult to make a
definitive conclusion.

Without definitive experiments at even higher Reynolds
numbers, one can never be sure of the universality of the

9 Ratio of tunnel span to 8.
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defect law. Very few existing facilities can deliver the re-
quired ultra-high Reynolds number flows, while maintain-
ing relatively low Mach number (in the so-called low-
speed, high-Reynolds number tunnels) as to avoid the added
complication of compressibility effects. The world's largest
wind tunnel, the 24 m x 37 m Full-Scale Aerodynamics
Facility at NASA Ames, is capable of generating a bound-
ary layer with a momentum-thickness Reynolds number as
high as 3.7x10% (Saddoughi and Veeravalli, 1994).

The largest available water tunnels and towing tanks can
deliver momentum thickness Reynolds numbers of ap-
proximately 3x10* and 9x10% respectively (Fig 1). Cryo-
genic tunnels, for example the National Transonic Facility
at NASA Langley, typically use nitrogen and run as high as
Re, = 6x10%, but their Mach number is near one and are
rather expensive as well as heavily scheduled (Bushnell and
Greene, 1991). Tunnels using liquid helium I are an at-
tractive, low-cost alternative to the much larger nitrogen
tunnels (Donnelly, 1991). Helium facilities can match the
Reynolds numbers of the transonic wind tunnels but with
essentially zero Mach number and much smaller sizes
(eg, 1 cm x 1 cm test section). Instrumenting the smaller
facilities with high-resolution velocity or pressure probes is
at present problematic, although the rapidly developing mi-
crofabrication technology has the potential for producing
inexpensive megahertz-frequency and micron-size sensors
(see, for example, Lofdahl ef al, 1989; 1991; 1992).

A commonly accessible large-scale, high-Reynolds
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number facility is the atmospheric boundary layer, The flow
is virtually incompressible and the momentum-thickness
Reynolds number in the atmosphere can be as much as four
orders of magnitude higher than that in typical laboratory
experiments. Unfortunately, such a natural laboratory has
several faults. Firstly, the “wall” in this case is almost al-
ways rough and direct comparison to the canonical bound-
ary layer is difficult. Secondly, the atmospheric experi-
ments are not well controlled, the flow conditions are nei-
ther precisely repeatable nor documentable to the needed
detail (see however the recent thesis by Kailasnath, 1993,
who was able to carry out useful comparison between low-
Reynolds number laboratory data and high-Reynolds num-
ber atmospheric data),

The so-called super-pipe facility is currently being con-
structed at Princeton University (AJ Smits, private com-
munications). The pipe has a diameter of 12.7 ¢cm and a
length-to-diameter ratio of 200. When completed, this high-
pressure-air (200 atm.) pipe flow will provide a very high
Reynolds number of up to Re, = 2.3x107 at a reasonably
large scale and low Mach number, and hopefully will help
in answering some of the questions raised in the present re-
view. ,

For the present at least, it is simply not known if the
mean flow in a wall-bounded flow ever achieves true self-
preservation, As will be shown in Section 6, the situation is
less clear for higher-order statistics.
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Fig 17. Low-Reynolds number effects on Clauser’s shape parameter (from Bandyopadhyay, 1992).

Downloaded From: http://appliedmechanicsr eviews.asmedigitalcollection.asme.or g/ on 09/20/2017 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use



324 Gad-el-Hak and Bandyopadhyay: Wall-bounded turbulent flows

5.5 Alternatives to the logarithmic profile

Despite copious evidence for the existence of the log law,
the whole scenario leading to it has been questioned (see
the references cited in Section 3.2). From a purely practical
point of view, a portion of the streamwise mean-velocity
profile could equally well fit either a logarithmic relation or
a power law. If the mean-velocity profile for a pipe flow (or
boundary layer) is to be fitted with a power law of the form:

1

£L=c(z)"

U, a
the value of the exponent (1/n ) will decrease as the velocity
profile becomes fuller. In other words, 1 increases as H de-
creases and Re increases. For example, the smooth-pipe-
flow data of Nikuradse (1932) indicate that # changes from
6 to 10 as the Reynolds number varies in the range of Re, =
2.53x103-1.85x106 (Schlichting, 1979).

Sreenivasan (1989) argues that although the power law
used by engineers to describe the mean-velocity profile has
been discredited by scientists since Millikan (1939) derived
the logarithmic law from asymptotic arguments, the basis
for the power law is a priori as sound as that for the log
law, particularly at low Reynolds numbers (see also
Barenblatt, 1979; 1993; Barenblatt and Prostokishin, 1993).
The behavior of the exponent (1/n ) as Re, » « is of
particular interest. If it tends to zero, the log law is re-
covered. If, on the other hand, the limiting value of the
exponent is a non-zero constant, the log law does not
strictly hold. This implies that an inertial sublayer is lacking
and, therefore, that viscous effects persist even at infinitely
large Reynolds number. Such a scenario is consistent with
the suggestion by Long and Chen (1981) that the inner flow
is the outcome of an interplay between wall effects and
outer effects. According to them, it is strange that the
matched layer between one characterized by inertia and
another characterized by viscosity depends only on inertia.
Long and Chen suggest that a “mesolayer” intrudes between
the inner and outer regions preventing the overlap assumed
in the derivation of the classical logarithmic velocity
profile. Unfortunately, existing experimental or numerical
mean-velocity data cannot readily be used to explore this
important issue since the difference between a logarithmic
relation and a power law with a large but finite » is
imperceptible (see Kailasnath, 1993, for a comprehensive
review of available data).

George et al (1992; 1993; 1994) provide the most serious
challenge to the validity of the log law for external wall-
bounded flows. They assert that boundary layer data taken
at different Reynolds numbers collapse in the log region
only if the shear stress is calculated from a method (ie the
Clauser's method) which forces it to by assuming such a
layer exists. Such superficial collapse compromises the
collapse in the viscous sublayer where no adjustable con-
stants or Reynolds number dependence should exist, As an
alternative, George ef al (1993) used measured shear stress
to normalize the data of Purtell et al (1981), and showed

(23)
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that the profiles collapse well very close to the wall but not
in the log region where clearly discernible Reynolds num-
ber dependence is depicted. To remedy the situation,
George et al (1993) propose matching a new velocity-defect
law with explicit Reynolds number dependence and the
traditional law of the wall. The result in the matched region
is a power-law velocity profile of the form:

U V n 7

~-c|2] +B 24

L=c, (L) -8, (24)
U n

li:q(f )+& 25)

U, v

where the coefficients B, B, C,, C, and the exponent n are
Reynolds number dependent, but all are asymptotically
constant. In a subsequent paper, George et al (1994) have
shown that the additive coefficients B,and B, are identically
zero. Using Eqs 24 and 25, the friction coefficient is readily
expressed as the Reynolds number to the power -2n/(1 + n).

George et al (1994) assert that their approach removes
many of the unsatisfying features of the classical Millikan's
(1939) theory. Furthermore, they argue that a clear distinc-
tion should be made between internal and external wall-
bounded flows. For fully-developed pipe and channel flows,
the streamwise homogeneity insures that the pressure gradi-
ent and wall-shear stress are not independent, and thus U_ is
the correct scaling velocity for the entire shear layer
including the core region, This results in a log law although
the flow has no constant-stress layer. The growing, in-
homogeneous boundary layer, in contrast, is governed by a
power law even though it does, at least for zero pressure
gradient and high Re, have a constant-stress layer. The
matched region of a boundary layer retains a dependence on
streamwise distance, and hence never becomes Reynolds
number independent. The same arguments presented here
for the mean flow could be extended to higher-order
statistics.

The difference in the inner region between flat-plate
boundary layers and fully-developed channel flows ex-
plored above might have serious implications on the prin-
ciple and use of the Preston tube, a device widely used for
measuring the local mean friction-coefficient. Such gauge is
commonly calibrated in a pipe flow and relies on the uni-
versality of the inner layer to compute the skin friction in a
flat-plate boundary layer. Such extrapolation is thus ques-
tionable, and direct measurements of wall-shear stress are
clearly preferred.

George and Castillo (1993) have recently extended the
new scaling law described earlier for the flat-plate flow to
boundary layers with pressure gradient. Inclusion of rough-
ness or compressibility effects could proceed along similar
attempts made in the past for the classical theory (Hama,
1954; Coles, 1962).

The fresh look at the turbulent boundary layer by George
and his colleagues is intriguing and deserves further scru-
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tiny. Independent confirmation of their claims is needed,
and carefully controlled boundary layer experiments over a
wide range of Reynolds number would be most useful.
Low-Reynolds number experiments in which the linear
region is resolved and the wall-shear stress is measured
directly would be particularly valuable. If validated, their
new theory indicates that the boundary layer is governed by
a different scaling law than commonly believed. Explicit,
albeit weak, Reynolds number dependence is shown for the
mean velocity profile all the way down to the edge of the
viscous sublayer. The matched region retains a dependence
on streamwise distance, and hence Reynolds number effects
will always persist for all turbulence quantities.

6. HIGHER-ORDER STATISTICS

Compared to the mean flow, higher-order statistical quanti-
ties are more difficult to measure, and the issue of Reynolds
number effects is murkier. For quantities such as root-
mean-square, Reynolds stress, skewness and spectrum, the
issues of spatial as well as temporal probe resolutions,
three-dimensional effects and boundary-layer tripping de-
vices become much more critical. In contrast to mean flow,
reliable data for higher-order statistics are scarce.

A measurement probe essentially integrates the signal
over its active sensing arca or volume. This means that ve-
locity or pressure fluctuations having scales smaller than
the sensor size are attenuated by the averaging process, and
the measured root-mean-square of the fluctuations, for ex-
ample, is smaller than the true value. Several studies have
shown the importance of probe size in the detection of
small-scale structures in the near-wall region (for example,
Willmarth and Bogar, 1977; Schewe, 1983; Johansson and
Alfredsson, 1983; Blackwelder and Haritonidis, 1983;
Luchik and Tiederman, 1986; Karlsson and Johansson,
1986; Ligrani and Bradshaw, 1987, Wei and Willmarth,
1989; Lofdahl ef al, 1992). As a rule of thumb, probe length
much larger than the viscous sublayer thickness is not ac-
ceptable for accurately measuring turbulence levels and
spectra anywhere across the boundary layer, and even
smaller sensing elements are required to resolve dynamical
events within the sublayer itself.

The issue of sufficient probe resolution is particularly
acute when studying Reynolds number effects. A probe that
provides accurate measurements at low Re might give erro-
neous results when the Reynolds number is increased and
the scales to be resolved become smaller relative to the
probe size. The probe resolution should be expressed in

wall units, and as mentioned above £ should not be much
larger than 5, where £ is the probe length.

The classic idea of inner scaling is that any turbulence
quantity measured at different Reynolds numbers and in dif-
ferent facilities will collapse, at least in the inner layer, to a
single universal profile when non-dimensionalized using
inner-layer variables. In contrast to mean-velocity profiles,
higher-order statistics do not in general scale with wall-
layer variables even deep inside the inner layer, In the fol-
lowing five subsections, we review Reynolds number ef-
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fects on the root-mean-square values of the velocity fluc-
tuations, Reynolds stress, spectra, skewness and flatness
factors, and rms and spectrum of the wall-pressure fluctua-
tions.

6.1 Root-mean-square velocity fluctuations

The intensity of turbulent fluctuations is defined by its root-
mean-square value. The streamwise velocity fluctuations
are more readily measured using, for example, a single hot-
wire probe or a two-beam laser Doppler velocimeter.
Measuring the other two velocity components, in contrast,
requires two hot wires either in an X-array or a V-array or
four intersecting laser beams. Especially very close to the
wall, few reliable measurements of the normal velocity
components are reported in the literature, and even fewer
are available for the spanwise component. A notable ex-
ception is the oil-channel data reported by Kreplin and
Eckelman (1979), who measured all three velocity compo-
nents inside the viscous sublayer. In here, boundary layer
data for both low and high Reynolds numbers are presented
followed by channel and pipe flow data.

Figure 18 shows the variation of the normal distribution
of turbulence intensity in wall variables with Reynolds
number. Measurements of the streamwise velocity compo-
nent were conducted by Purtell er a/ (1981) in a low-
Reynolds number, flat-plate boundary layer. Four Reynolds
numbers based on momentum thickness are presented in the
figure, ranging from Re, = 465 to 5100. It is clear that
Reynolds number effects penetrate into the boundary layer
much deeper in terms of the turbulence intensity than it
does for the mean velocity. Approximate similarity in wall
units is maintained only out to y* =~ 15, compared with
mean velocity which is similar throughout the entire inner
layer. Close inspection of the figure reveals that even in the
viscous region itself, some weak dependence on Reynolds
number is observed in the rms value of the streamwise ve-
locity fluctuations, as seen at the lowest Reynolds number
of Rey = 465, Purtell et al attributed the systematic decrease
in 4’ across most of the boundary layer to the suppression
of all but the largest turbulence eddies as the Reynolds
number is reduced.
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Fig 18. Variation of the distribution of turbulence intensity in wall variables

with Reynolds number. Boundary layer data from Purtell et a/ (1981).

Downloaded From: http://appliedmechanicsr eviews.asmedigitalcollection.asme.or g/ on 09/20/2017 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use



3268 Gad-el-Hak and Bandyopadhyay: Wall-bounded turbulent flows

Reynolds number can of course be changed either by
varying the freestream velocity at a fixed streamwise loca-
tion or by holding the tunnel speed constant and conducting
the measurements at increasing downstream locations. To
check the state of development of the flow, Purtell er al
(1981) measured, for a fixed freestream velocity, the mean-
velocity profiles at four downstream distances from the
tripping device. At the station closest to the distributed
roughness, they report under-development in the outer re-
gion of the mean flow, but an undistorted logarithmic re-
gion that produces friction velocity values in agreement
with directly measured U -values computed from near-wall
measurements of 0U/0y. The same trends were observed at
higher Reynolds numbers by Klebanoff and Diehl (1951).

When normalized with the freestream velocity, u' also
shows distortion in the outer region for measurements not
sufficiently far downstream of the tripping device. How-
ever, as shown in Fig 19, the rms data plotted in inner
variables at a freestream velocity of 2.3 m/s and four
downstream stations x = 91, 122, 152 and 183 cm, exhibit
such a strong Reynolds number dependence in the outer
layer that the distortion mentioned above is obscured. Close
inspection of Fig 19 shows a small but systematic Reynolds
number effect even below y* = 10. Barring the first meas-
urement station (x = 91 cm), which is non-typical due to its

close proximity to the tripping device, at a given y*, u;,  in-
creases with x, that is with Rey.

One might argue that the strong Reynolds number effects
shown above will eventually subside at sufficiently high
Reynolds number. This is not the case, at least up to Re,y of
15,406, as shown in Andreopoulos et al's (1984) flat-plate
data depicted in Fig 20a. The rms-values of the longitudinal
velocity fluctuations show strong Reynolds number depend-
ence all the way to the edge of the viscous sublayer. In the
buffer layer, u'/U_ decreases as the Reynolds number in-
creases from 3624 to 12,436, thereafter reaching what
seems to be a constant value. An opposite trend, that con-
tinues for all four Reynolds numbers, is observed in the
logarithmic and wake regions. Andreopoulos ef al (1984)
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- Fig 19. Distribution of turbulence intensity in wall variables at four
different downstream locations. Flat-plate boundary layer at U,_'=2.3 m/s.

(from Purtell er o/, 1981).
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indicated that the behavior of their u'-data in the buffer re-
gion is in general agreement with the channel flow results
of Laufer (1951), Comte-Bellot (1965) and Zaric (1972),

Andreopoulos et al (1984) were able to measure the
normal velocity component only at the lowest Reynolds
number, Rey = 3620, as shown in Fig 20b. The weak second
peak in v'/U, appearing at y* = 4 seems to be unique to this
particular experiment, but the authors do not comment on
this. Reliable v'- measurements could not be obtained by
Andreopoulos et al for higher Reynolds numbers due to
limitations of the applicable velocity range of their triple-
wire sensot.

The effect of Reynolds number on the inner-layer turbu-
lence in boundary layers is summarized in Fig 21, adapted
by Bandyopadhyay (1991) from several different experi-
ments. The peak value of u-turbulence intensity, which oc-
curs at 12 < y* < 15, is plotted normalized by wall variables
versus the logarithm of Re,. In Ueda and Hinze's (1975) ex-
periment, the freestream turbulence is 0.03%, hot wire £7 is
between 2.4 and 6.7, and the measurements have been car-
ried out at 3.4 m downstream of a trip wire, In Erm ef al's
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Fig 20. Normal profiles of rms streamwise velocity, rms normal velocity,
and Reynolds stress (from Andreopoulos et al, 1984): (a) Root-mean-square
values of longitudinal velocity fluctuations at four different Reynolds
numbers; (b) Root-mean-square values of normal velocity fluctuations at
Rey = 3620; (c) Measured and computed Reynolds stress distributions at

Rey = 3664.
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(1987) experiment, £ < 5 and the measurements have been
carried out 0.18 to 1.94 m downstream of stimulator pins.
Two sets of Purtell ef al's (1981) experiments are included
where No. 4 floor sanding paper has been used to trip the
boundary layer, T, = 0.05%, and 0.8 < ¢* < 3. The Re, =
465 data point is from a station 1.07 m downstream of a 15-
cm long fetch of sand paper. The higher data points are
from runs where the sand roughness extended over 61 ¢cm
and the measurements were carried out 2.69 m downstream.
Note the higher value of the maximum turbulence intensity
at the lowest Rey of the second data set. In Andreopoulos ef
al's (1984) experiment, 1.7 < ¢* < 6.4, and the
measurements were carried out 3 to 4 m downstream of a 1
cm-long sandpaper trip (grit height ~ | mm).

In Fig 21, T, or ¢" does not explain the variation be-
tween the different facilities. Despite the scatter in the dif-
ferent data sets, the general trend is for increasing values of
the normalized peak value of u,,; with Reynolds number, at
least initially. The paucity of data at Rey > 6000 precludes
making any definitive statement regarding the asymptotic
behavior of uy,,. Since Re,represents outer layer scales, the
figure shows that the outer layer affects the inner-layer u-
turbulence. The outer-layer effect seems to be facility de-
pendent even at Rey ~ 5x10% and 3.4 m from the trip. The
stronger trip effects on turbulence at the higher Reynolds
number is surprising, although as will be shown in Section
8.3.2, the mean flow also exhibits a similar behavior.

In Fig 21, in three experiments, the maximum value of

/U, first increases rapidly (above 2.8) with Reynolds
number before dropping slowly. This behavior is similar to
the high Reynolds number mean flow behavior downstream
of a trip. The reason for this is not understood; but like it is
known for the effect of freestream turbulence, length scales
O[8] introduced into the outer layer by the trips could be
involved. In that case, it is interesting that certain transition
devices could affect the turbulence in a boundary layer at
high Reynolds numbers even beyond 858. Three data points
from the direct numerical simulation of Spalart (1986) are
included in the figure and they indicate similar trends to
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Fig 21. Peak value of u-turbulence intensity in turbulent boundary layers.
The plot, from four different experiments and a single direct numerical
simulation, demonstrates the effect of outer layer scales on inner-layer
turbulence (from Bandyopadhyay, 1991).
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those of the low-Reynolds number experiments.

Relatively more data are available for two-dimensional
channel flows. Figure 22 depicts Reynolds number effects
on the normal profiles of the streamwise turbulence inten-
sity in four different channel flows. Laufer's (1951) experi-
ments were conducted at three Reynolds numbers, based on
channel half-width and centerline velocity, of Re, = [2,300;
30,800; and 61,600. Comite-Bellot (1965) covered the
higher range of Re, = 57,000 and 230,000. Kreplin and
Eckelmann's (1979) experiments were conducted at Re, =
3850, Johansson and Alfredsson (1982) provided data for
Re, = 6900; 17,300; and 24,450.

Probe resolution problems appear to exist in both
Laufer's and Comte-Bellot's high-Reynolds number data. In
the former experiment, the hot-wire length increased from 3
wall units at the lowest Reynolds number investigated to 13
wall units at the highest Reynolds number, a fourfold loss in
spatial resolution. Laufer (1951) observed (erroneously) a
corresponding decrease in the peak value of /U, with in-
creasing Reynolds number. Comte-Bellot's (1965) probe
length increased from 13 to 36 viscous lengths as Re, in-
creased from 57,000 to 230,000. Correspondingly, she also
observed (erroneously) a decrease in the peak value of the
nondimensional streamwise turbulence intensity from 2.85
to 2.5. High-quality turbulence data obtained using suffi-
ciently small probes and facilities void of significant trip-
memory effects are clearly lacking, In any case, the data in
Fig 22 indicate that the turbulence intensity profiles do not
collapse even deep into the inner layer.

Similar trends are observed in the rms-values of the ve-
locity fluctuations normal to the wall. Figure 23 depicts the
v’ -profiles taken from four different facilities. Laufer's
(1951) experiments were conducted at Re, = 12,300;
30,800; and 61,600. Comte-Bellot (1965) covered the
higher values of Re, = 57.000 and 230,000. Eckelmann
(1974) provided data for Re, = 2800 and 4100. Alfredsson
and Johansson's (1984) experiments were conducted at Re,
= 7500. The peak v’ is lower than that for the streamwise
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Fig 22. Streamwise turbulence intensity profiles non-dimensionalized with
respect to inner variables. Channel flow data from four different
experiments, compiled by Wei and Willmarth (1989).
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328  Gad-el-Hak and Bandyopadhyay: Wall-bounded turbulent flows

fluctuations and occurs further away from the wall. Validity
of inner scaling deep into the viscous region can not be as-
certained from this figure because of the scarcity of data for
y* <30,

In view of the poor quality of most of the data in Figs 22
and 23, Wei and Willmarth (1989) systematically investi-
gated the Reynolds number effects using a unique high-
resolution, two-component laser-Doppler anemometer. To
reduce the amount of ambient light in the vicinity of the
measuring volume and thus to improve the signal-to-noise-
ratio of the LDA system, four laser beams were entered and
exited into the test section via two narrow slits located at
the two side walls of a two-dimensional water channel,
Both slots were covered with an extremely thin (17 mi-
crons) window of heat shrinking Mylar film, which virtaally
climinated optical refraction by the window. The laser
beams intersected at a single point away from the wall, and
the effective probe length ranged from 0.66 to 6.43 wall
units as the Reynolds number was varied in the range of Re,

30 7
25
Re,
e 2800
20 o 4100
= 7500
w 12,300
A 30800
v’ L @ 57,000
7, 18 v 61000
© 230,000
L g H . AAV y 2P °o0
10 Lea vRES® o °
n Ta g Xv, g ©
s X7V e, %
(-] =] a A‘vv'
os | ®° o
®
o ®
P
0 L . . ,
1 10 100 1000 10,000

Fig 23. Normal turbulence intensity profiles non-dimensionalized with
respect to inner variables. Channel flow data from four different
experiments, complied by Wei and Willmarth (1989).
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Fig 24. Profiles of turbulence intensity in streamwise direction (open
points) and direction normal to wall (solid points), hon-dimensionalized on
local mean velocity. Channel flow data of Wei and Wilimarth (1989).
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= 3000-40,000. Beam refraction in the path between the la-
ser source and the measuring station was minimized using a
specially designed optical head.

The combination of high spatial resolution and high data
rates enabled Wei and Willmarth (1989) to reconstruct ac-
curate time-dependent velocity traces. Their results for the
streamwise and normal turbulence intensities are presented
in Figs 24 and 25. In the former figure, #' and v’ are nondi-
mensionalized with the local mean velocity U, while U, is
used as a velocity scale in Fig 25, In Fig 24, the intensity of
turbulent fluctuations is described relative to the square root
of the mean kinetic energy per unit mass at a given distance
from the wall. The apparent increase in v'/U as the surface
of the channel is approached violates the continuity equa-
tion and is probably caused by reduced measurement reso-
lution very close to the wall.

The inner variable plot in Fig 25 allows some instructive
comparison to other data in the literature (Figs 22 and 23).
Wei and Willmarth (1989) ascribe the slight disagreement
between the different data sets to a decreased spatial reso-
lution of the hot wires used by Laufer (1951), Comte-Bellot
(1965) and Johansson and Alfredsson (1982) at high
Reynolds numbers. But, even in the newer data set, the
fluctuating turbulence quantities do not scale with wall
variables even at as close as 10 viscous lengths from the
wall. In fact, inner scaling does not seem to apply to v’
across the entire portion of the viscous region where meas-
urements are available,

More recently, Harder and Tiederman (1991) have stud-
ied the behavior of the rms of the fluctuating streamwise
and normal velocities as a function of distance from the
wall of a two-dimensional water channel, Their results are
depicted in Fig 26 for Re, = 9019; 12,663; 19,013; and
21,650. In here, u;, peaks at2.76 fora y* = 15, while v
peaks at a y* = 75 with a value of 1.12. The data are gen-

erally 7% lower than those of Walker and Tiederman's
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Fig 25. Profiles of turbulence intensity in streamwise direction (open
points) and direction normal to wall (solid points), non-dimensionalized on
inner variables./Channel flow data of Wei and Willmarth (1989).
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(1990) experiments. indicated by the solid lines in Fig 26,
but 7% higher than the experimental values obtained by
Hussain and Reynolds (1975) or the numerical simulation
results of Kim et al (1987).

Harder and Tiederman (1991) assert that, in dis-
agreement with Wei and Willmarth (1989), inner scaling
does correlate the data for all Reynolds number in the wall
region ( y* < 50). However, in the present authors’ opinion,
the range of Reynolds numbers investigated by Harder and
Tiederman (1990) is too narrow to make such a claim. The
dependence on Reynolds number in the inner region is a
rather weak one, and a substantial change in Re, is needed
to assure a measurable effect. Typically the turbulence in-
tensity changes by only a few percentage points when the
Reynolds number changes by 100%. The ratio of the largest
to smallest Re, in Wei and Willmarth's study is about 13,
while it is only 2.4 in Harder and Tiederman's,

Additional support for Wei and Willmarth's (1989) basic
conclusion that turbulence quantities in the near-wall region
do not scale on wall variables comes from the boundary
layer experiments of Purtell ef a/ (1981) and Andreopoulous
et al (1984), referenced eatrlier in this section, as well as
from the physical and numerical channel-flow experiments
conducted by Antonia ef al (1992) and the flat-plate ex-
periments of Murlis et a/ (1982), Wark and Nagib (1991)
and Naguib and Wark (1992; 1994). It is, of course, con-
ceivable that wall-layer scaling might apply over the entire
inner layer provided that the Reynolds number is high
enough, but at the moment at least such ultra-high-Reynolds
number experiments cannot be conducted with sufficient
probe resolution.

The effect of Reynolds number on the inner-layer turbu-
lence in channel flows is summarized in Fig 27, compiled
by Bandyopadhyay (1991). The peak value of u-turbulence
intensity, which occurs at 12 < y* < 15, is plotted normal-
ized by wall variables. The data in the figure are compiled
from the experiments conducted by Laufer (1951), Grass
(1971), Eckelman (1974), Johansson and Alfredsson (1982),
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Fig 26. Profiles of turbulence intensity in streamwise direction and direction
normal to wall, non-dimensionalized on inner variables. Channel flow data
of Harder and Tiederman (1991). Solid lines in figure are best fit to Walker
and Tiederman’s (1990) data.
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and Wei and Willmarth (1989) in five different facilities.
For all the data points shown in Fig 27, probe resolution is
better than 7 wall units. The data follows the general trends
reported by Wei and Willmarth (1989), and the solid line in
the figure is a least-square fit to all the points. The peak
value in channel flows seems to be increasing monotoni-
cally with Reynolds number, at least up to Re, = 23,000.
Confidence in the data in this figure is, in general, higher
than that for the boundary layer results summarized in Fig
21. There, post-transition memory effects may have played
a role, that remains ill understood, in the observed trends.
Perry and Abell (1975) provide pipe flow data for the
Reynolds number range of Re, = 40,000-130,000. An ex-
ample of their data is shown in Fig 28. The streamwise
turbulence intensity in wall units is plotted versus y* for
four different Reynolds numbers. As a consequence of the
existence of a constant-stress regime, a distinct region of
constant turbulence level appears for each of the four .
Reynolds numbers investigated [see Section 3.2 and Eq 9].
Although scaling with inner variables appears to collapse
the pipe-flow data in the inner region, in contrary to the
boundary-layer and channel-flow data discussed earlier, it
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Fig 27. Peak value of u-turbulence intensity in two-dimensional channel
flows. The plot, from five different experiments, demonstrates the effect of
outer layer scales on inner-layer turbulence. Solid line represents the mean
trend (from Bandyopadhyay, 1991).
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Fig 28. Streamwise turbulence intensity profiles non-dimensionalized with
respect to inner variables. High-Reynolds number pipe-flow experiments of
Perry and Abell (1975). ‘

Downloaded From: http://appliedmechanicsr eviews.asmedigitalcollection.asme.or g/ on 09/20/2017 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use
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should be noted that the data in Fig 28 have been obtained
with a hot-wire whose length has ranged from 35 to 100
wall units as the Reynolds number changed in the indicated
range. According to the criterion that have been established
earlier in this paper, Perry and Abell's probe resolution is
insufficient to prove or refute the existence of similarity
with inner variables, —

Coles (1978) summarized the results of 50 different ex:
periments conducted in circular pipes, rectangular channels
and zero-pressure-gradient boundary layers. He does remark
that not all experiments are-equally reliable. Nevertheless,
Fig 3 of Coles' paper indicates that, when the ratio of outer
to inner length-scalées, &*, increases from 100 to 10,000, the
value of the rms streamwise velocity fluctuations measured
at y* = 50 and normalized with the corresponding peak
value measured at y* ~ 15 systematically increases from
about 0.6 to 0.9. This result is consistent with a non-negli-
gible Reynolds number effect on the turbulence just outside
the viscous region.

6.2 Reynolds stress
6.2.1 Reynolds number effects

Turbulence shear stress, or Reynolds stress —pu_u, is the
most important dynamical quantity affecting the mean mo-
tion. The major portion of the momentum transported in a
two-dimensional turbulent wall-bounded flow is accom-

plished by —uv. Therefore, modeling the behavior of
Reynolds stress is one of the primary objectives of various
prediction schemes. Simultancous measurements of the
streamwise and normal velocity fluctuations are required to
compute the Reynolds stress at any particular point in the
flow field. Provided this is done with high fidelity in the
low- to moderate-Reynolds number laboratory experiments,
extrapolation to the higher-Reynolds number field condi-
tions is only possible if the Reynolds number effects are
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Fig 29. Reynolds stress profiles in wall units versus distance from wall
normalized with channel half-width. Channel flow data from four different
experiments, compiled by Wei and Willmarth (1989). Solid line represents
total shear stress profile.
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well understood. In this subsection, we review those effects
in boundary layers, channels and pipes.

In boundary layers, the normalized cross correlation —uv
is plotted in Fig 20c, for a single Reynolds number of Re,, =

3664. Again, Andreopoulos ef al (1984) were unable to
measure the Reynolds stress reliably at higher Reynolds
numbers due to limitations of the applicable velocity range
of their triple wire probe. The directly measured turbulence
shear stress is on the average 10% smaller than the theoreti-
cal distribution deduced from the momentum balance and
mean flow data-and shown by the open symbols in Fig 20c.

More data are available for two-dimensional channel
flows. The (kinematic) Reynolds stress normalized with the
friction velocity is plotted versus the distance normal to the
wall normalized with the channel half-width in Figs 29 and
30. In both figures, the data points are directly computed by
averaging the product of the measured u- and v-velocity
fluctuations, and the solid line represents the theoretical to-
tal shear stress profile. In Fig 29, data from four different
experiments are presented. Eckelmann (1974), using an oil
channel, covered the low Reynolds numbers of 2800 and
4100. Alfredsson and Johansson (1984) conducted their ex-
periment at Re, = 7500, while Kastrinakis and Eckelmann
(1983) conducted theirs at Re, =12,600. Comte-Bellot
(1965) covered the higher range of Reynolds number of
57,000 and 230,000.

The data of Wei and Willmarth (1989) covered the
Reynolds number range of 2970 to 39,582, and are repro-
duced in the linear plot shown in Fig 30. Their high-resolu-
tion LDA allows measurements very close to the wall
where the Reynolds stress is decreasing. The maxima of the
non-dimensional turbulence shear stress profiles increase in
magnitude and are closer to the wall as the Reynolds num-
ber increases.

The same data above are plotted versus y* in Fig 31.
Here, the semi-log plot allows closer inspection of the near-
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Fig 30. Reynolds stress profiles in wall units versus distance from wall
normalized with channel half-width. Channel flow data of Wei and
Willmarth (1989) at four different Reynolds numbers. Solid line represents
total shear stress profile.
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wall region, and Reynolds number effects are demonstrated
more clearly. The maximum value of the normalized turbu-
lence shear stress is not the same for each profile, indicating
the lack of inner scaling in the Reynolds number range in-
vestigated, When expressed in wall units, the location of
peak Reynolds stress moves away from the wall as the
Reynolds number increases.

One advantage of investigating fully-developed pipe or
channel flows is the ability to compare measurements with
the computed Reynolds stress using the mean-velocity
profile and pressure gradient, two quantities which are eas-
ier to measure. This has the advantage of being able to
check the accuracy of the directly measured Reynolds
stress, especially near the wall where probe resolution
problems are particularly acute, In a fully-developed chan-
nel or pipe flow, the average normal and spanwise veloci-
ties vanish, there are no mean longitudinal velocity or
Reynolds stress variations in the streamwise and spanwise
directions, and the pressure gradient is a constant, The
Iongitudinal momentum equation could then be integrated
to give an exact relation between the Reynolds stress and
mean-velocity distribution:

~uv =-v ([@Uidy) + U2 (1 - y/) (26)

where U(y) is the streamwise mean-velocity distribution
and ¢ is the channel half-width or pipe radius. The friction
velocity, or the slope of the velocity profile at the wall, is
related to the constant pressure gradient through:

UZ2=v (@dU/dy),= - (alp) (dP/dx)

where P is the static pressure and p and v are the fluid
density and kinematic viscosity, respectively, In wall units
the momentum balance Eq 26 reads:

(27

W

o =- @dU/dy*) + (1 -y*/a®) (28)

Wei and Willmarth (1989) used Eq 28 to compute the
Reynolds stress profiles shown by the solid lines in Fig 31.
Again, the non-dimensional profiles at different Reynolds
numbers do not collapse in the outer and logarithmic re-
gions and even well into the viscous region. Except very
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Fig 31. Reynolds stress profiles non-dimensionalized on inner variables.
Channel flow data of Wei and Willmarth (1989) at four different Reynolds
aumbers. Solid line represents momentum balance calculations.

Gad-el-Hak and Bandyopadhyay: Wall-bounded turbuient flows 331

close to the wall, the agreement between the directly meas-
ured Reynolds stress and that computed from the measured
mean velocity and pressure gradient is very good, and at-
tests to the accuracy of the instantaneous velocity traces re-
constructed, filtered and smoothed from the Doppler burst
detector and processor signals. Wei and Willmarth specu-
late that the divergence between the directly measured and
computed Reynolds stresses is due to insufficient spatial
and temporal resolution in the direct LDA measurement
very close to the wall. ]

The Reynolds stress profiles measured in a water channel
by Harder and Tiederman (1991) are reproduced, non-di-
mensionalized with inner variables, in Fig 32. The range of
Reynolds numbers investigated, Re, = 9019 to 21,650, is
narrower than that studied by Wei and Willmarth (1989).
Not surprisingly, then, Harder and Tiederman assert that,
for y* < 50, inner scaling correlates their data for all four
Reynolds numbers.

Wei and Willmarth (1989) also computed the turbulence
kinetic energy production using both the directly measured
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Fig 32. Reynolds stress profiles non-dimensionalized on inner variables.
Channel flow data of Harder and Tiederman (1991) at four different
Reynolds numbers.
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Fig 33. Turbulence kinetic energy production profiles. Channel flow data of
Wei and Willmarth (1989) at four different Reynolds numbers. Solid lines
represent momentum balance calculations.
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Reynolds stress and the momentum balance equation, The
profiles for four different Reynolds numbers are shown non-
dimensionalized with inner variables in Fig 33. Excepting
very close to the wall, the two methods of computing
—w (dU/dy) agree within 10%. Neither method leads to a
profile collapse even in the viscous region. The maximum
value of kinetic energy production obtained from the
momentum balance increases with Reynolds number. The
data point nearest to the wall measured at Re, = 22,776
appears to be in error. Interestingly, while the position of
peak Reynolds stress, expressed in wall units, moves away
from the wall as the Reynolds number increases (Fig 31),
the peak turbulence production seems to be fixed at y* =
12-15. This point will be revisited later in this section and
once more in Section 7.

The measurements of mean velocity and pressure drop in
the smooth-pipe-flow experiments of Nikuradse (1932) and
Laufer (1954) were used to compute the Reéynolds stress
profiles shown previously in Fig 5. The Reynolds number in
that figure, Re* = U.a /v, is the ratio of the pipe radius to
the viscous length-scale, and varies over the wide range of
140-55,400. A constant-turbulent-shear-stress region is
clear at the highest Reynolds number. As in the channel
flows, the peak value of normalized Reynolds stress in-
creases and its location, relative to the viscous length-scale,
moves away from the wall as the Reynolds number in-
creases.

6.2.2 Peak location
Sreenivasan (1989) analyzed several different wall-bounded
= Klebanofr (1954)
»  Kim et al. (1971)
103 4 Kudva & Sesonake (1972) (a)
X Gupta & Kaplan (1972)
O Bremhorst & Walker (1974)
v Ueda & hina (1977)
9 Wilmarth & Bogar (1977)
®  Schildknecht et al, (1979)
+ Andreapoulos et al, (1984)
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102
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Fig 34. Location of peak Reynolds stress as a function of Reynolds number.
Data compiled by Sreenivasan (1988) from varions wall-bounded flow
experiments. Solid lines are least-square fit: (a) Directly measured Reynolds
stress; (b) Computed from measured mean velocity. The lowermost two data
points correspond to the critical layer position in typical transitional flows.
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flow experiments. The distance from the wall, expressed in
inner variables, where the streamwise turbulence intensity
peaks appears to be independent of Reynolds number (Fig
16 of his paper). In contrast, the location where the largest
normal fluctuations occur is a strong function of Reynolds
number (Fig 17 of his paper):

[7*]ymax = [RE*107 (29)

where Re™ is the pipe radius or boundary layer thickness in
wall units. Available data on the spanwise intensity are
scarce and no conclusion can be reached on the scaling of
its peak position. For the total turbulence kinetic energy,
however, the position of its peak does scale on wall vari-
ables, much the same as «'. This is because the near-wall
value of the total fluctuation energy is essentlally ovet-
whelmed by the streamwise component.

Similar to the normal fluctuations, the peak Reynolds
stress occurs at increasingly higher values of y* as the
Reynolds number increases as shown in Figs 34a and 34b,
compiled from directly measured and computed turbulence
shear stress data, respectively. The lowermost two data
points in Fig 34b correspond to the location of the peak
Reynolds stress, or the critical layer position, in typical
transitional boundary layer and channel flows. A least-
square fit of all the data points in both figures leads to the
same equation:

Dpl = 2[Re™PS (30)

where y_ is the location of peak Reynolds stress. Note that
although probe resolution has a significant effect on the
magnitude of turbulence intensity, Reynolds stress or other
higher-order statistics, a relatively long probe should have
less effect on the accuracy of determining the peak location
of these quantities. It is therefore not surprising that
Sreenivasan (1989) could use a variety of data sources, in-
cluding some with insufficient probe resolution, to arrive at
the correlations in Eqs 29 and 30. '
Equation 30 indicates that the location of the peak turbu-
lence stress scales on the geometric mean of the inner and
outer scales. Recall that, since this is the position in
Sreenivasan's (1988) model discussed in Section 4, where
all the mean vorticity of a turbulent boundary layer has
been assumed to be concentrated into a single sheet, the
correlation in Eq 30 gives some credence to his hypothesis.

Note that if a velocity profile is assumed for the case of
fully-developed channel flow, exact expressions for the lo-
cation of the peak Reynolds stress and turbulence kinetic
energy production could be derived from Eq 26. For exam-
ple, if the logarithmic mean-velocity profile,!® Eq 8, is

used, the peak Reynolds stress occurs at y, = 1.56 Re*®3,

while the peak production occurs at a fixed y*.

At high Reynolds numbers the peak Reynolds stress oc-
curs substantially outside the viscous region. Note however
that, due to the shrinking of the inner layer as the Reynolds

0 Not an accurate assumption for y* < 30.
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number increases, this peak location moves closer to the
wall as a fraction of the boundary layer thickness.
Interestingly, while the most significant Reynolds-stress-
producing activity does not occur at a universal value of y*,
the production of turbulence kinetic energy, —uv (dU/dy) |
does always peak at y* = 15. This implies that, at high
Reynolds numbers where the two positions dispart, the
scales producing the Reynolds stress are quite different
from those responsible for the turbulence kinetic energy
production, It is this observation that led Townsend (1961)
to hypothesize the existence of an active motion and an in-
active motion within the inner layer. The former is due to
the vorticity field of the inner-layer proper and is responsi-
ble for Reynolds stress production, The statistical properties
of the active motion are presumably universal functions of
the distance from the wall. The inactive, larger-scale mo-
tion is partly due to the irrotational field sloshing associated
with the pressure fluctuations in the outer layer and partly
the large-scale vorticity field of the outer-layer turbulence
which the inner layer sees as an unsteady external stream
(see also the substantiative measurements of Bradshaw,
1967). The inactive motion does not scale with inner vari-
ables, and is characterized by intense velocity fluctuations.
The effect of increasing the Reynolds number can then be
thought of as the increasing significance of the inactive
motion (see also Naguib and Wark, 1994),

The primary conclusion of this and the previous subsec-
tions is that Reynolds number does have an effect on the
turbulence shear stress even in the inner layer. Inner scaling
fails to collapse the Reynolds stress profiles. The peak
value of —uv increases with Reynolds number and its
position moves outward when expressed in wall units,

6.2.3 Asymptotic theory

The results depicted in Sections 6.1, 6.2.1 and 6.2.2 indicate
that inner scaling fails to collapse the profiles for the
Reynolds stress and for the root-mean-square values of the
velocity fluctuations. Considerable Reynolds number ef-
fects are exhibited even for y* values less than 100, Panton
(1990a) points out that a turbulent wall-bounded flow is
fundamentally a two-layer structure, a classical single per-
turbation situation. At finite Reynolds numbers, neither the
inner representation nor the outer representation is a uni-
formly valid approximation to the true answer in the
matching region. As Rey varies, the overlap layer changes
size and the proportions of inner and outer cffects are
altered.

A uniformly valid answer for the present singular pertur-
bation problem could be obtained by forming an additive
composite expansion from the inner and outer expansions.
Matching essentially replaces the two lost boundary condi-
tions at y = 0 and y = oo, and the additive composite ex-
pansion is simply the sum of the inner and outer ones mi-
nus the common part (see, for example, Van Dyke, 1974).
Systematic changes with Reynolds number that are consid-
ered anomalies when turbulent quantities are expressed as
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inner expansions could then be considered as proper first-
order trends that are expected when viewed in the proper
light. Such treatment were demonstrated for the mean flow
(Panton, 1990b), for the rms turbulent fluctuations (Panton,
1991), and for the Reynolds stress (Panton, 1990a). Root-
mean-square values of the velocity fluctuations or Reynolds
stress expressed as additive composite expansions are
equivalent in accuracy to the mean velocity expressed as
the law of the wall plus the law of the wake.

For the mean flow, Panton (1990a) suggests the use of an
inner velocity scale that is different from the friction veloc-
ity (see Eq 7 of the present article), the two being equal
only in the limit of infinite Reynolds number. Within the
framework of an asymptotic theory (Yajnik, 1970; Afzal,
1976; Afzal and Bush, 1985), the lowest-order equation for
the mean flow shows weak Reynolds number dependence
while that for the Reynolds stress indicates a much stronger
effect. According to Panton (1990a), the logarithmic nature
of the inner, outer and composite expansions for the mean
flow dictates minimal Reynolds number effects. On the
other hand, the Reynolds stress behaves algebraically and
the inner/outer effects are mixed in different proportions
and occur at different locations, resulting in strong
Reynolds number dependency even in the first-order theory.
Moreover, the additive composite expansion for the
Reynolds stress does not evince a constant-stress region,
only the inner expansion does sO.

6.3 Spectra

It is often useful to analyze the kinetic energy of the turbu-
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Fig 35. Power spectra of the streamwise velocity fluctuations at yr=1s.
Inner variables scaling is used for normalization. Channel flow data at three
Reynolds numbers; from Wei and Willmarth (1989): (a) Semi-log plot; (b)
Log-log plot.
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lent fluctuations according to its distribution over the vari-
ous frequencies occurring in these fluctuations. The energy
(or power) density spectrum of the fluctuating velocity
components or Reynolds stress is computed from the re-
spective instantaneous, digitized signals, and can yield in-
formation regarding structural evolution as the Reynolds
number changes. Consider the channel flow data of Wei
and Willmarth (1989) taken at y* = 15 at three different
Reynolds numbers: Re, = 2970; 14,914; and 22,776, The
power spectra of the streamwise velocity fluctuations non-
dimensionalized with inner variables are plotted versus the
angular frequency in wall units on a semi-log scale in Fig
35a and on a log-log scale in Fig 35b. The normalization
employed in these figures is that used by Perry and Abell
(1975) and is such that the area under each curve is the
mean-square of the velocity fluctuations in wall units.
Essentially:

o) = o* D(w)/v 3D

wt=o0v/U? (32)

where ®(w) is the power spectral density of the velocity (or
Reynolds stress) fluctuations, @ is the radian frequency, and
w* is the frequency scaled with inner variables,
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Fig 36. Power spectra of the normal velocity fluctuations at yt=15.
Channel flow data from Wei and Willmarth (1989).
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Fig 37. Power spectra of the Reynolds stress fluctuations aty™ = 15.
Channel flow data from Wei and Willmarth (1989).
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Although there is appreciable scatter at lower frequen-~
cies (in the semi-log plot),!! the u-power spectra in Figure
35 suggest that the energy-containing eddies scale on inner
variables in the vicinity of the kinetic energy production
peak, y* = 15, However, at high frequencies, the spectra
begin to diverge from inner-layer scaling and greater energy
is available with increasing Reynolds number (see the log-
log plot in Fig 35b, which emphasizes the low-energy por-
tion of the spectrum), This is consistent with the appearance
of smaller eddies and increased vortex stretching at higher
Reynolds numbers as will be discussed in Section 7. Notice
that the increase in the streamwise turbulence kinetic en-
ergy with Reynolds number is very slight, consistent with
the near-collapse of u'- data for y* < 15 in Fig 25.

Normalized plots similar to Fig 35a but for the near-wall
normal velocity fluctuations and Reynolds stress are given
in Figs 36 and 37, respectively. Neither set of plots scale on
inner variables over a large portion of the energy-containing
frequency range. This is consistent with Wei and
Willmarth's (1989) assertion that neither the v'-profiles nor

the —yv-profiles scale on inner variables even very close to
the wall (Figs 25 and 31).

The power spectra of the streamwise velocity, normal
velocity and Reynolds stress in the same channel flow as
above but near the edge of the inner layer, y* = 125, are
shown in Figs 38, 39, and 40, respectively. Again, the area
under each spectrum represents the mean square of the cor-
responding velocity or Reynolds stress fluctuations normal-
ized with inner variables. Reynolds number effects on the
high-frequency portion of the spectrum appear to be less -
pronounced at this distance farther away from the wall as
compared to the spectra in the near-wall region depicted in
Figs 35-37. Since the mean-velocity gradient decreases with
increasing distance from the wall, Wei and Willmarth
(1989) attribute the weaker Reynolds number-dependence
to a diminished stretching of vorticity farther away from the
wall. On the other hand, in the low-frequency portion of the
spectra, Reynolds number effects are stronger, The lack of
scaling with inner variables at y* = 125 is consistent with
the measurements of Bradshaw (1967) and is due to the
large-scale inactive motion,

The power spectra of the streamwise velocity fluctua-
tions in the high-Reynolds number pipe flow experiment of
Perry and Abell (1975) are shown in Fig 41. In this nor-
malized log-log plot, ®(ky)/U? is plotted versus ky, where k
is the wavenumber, The data points represent several
Reynolds numbers in the range of Re, = 40,000-130,000,
and several distances from the wall in the range of yt =
150-444. These distances correspond to the region of over-
lap where y is much larger than the viscous length-scale but
much smaller than the outer scale (see Section 3.2). In this
constant-Reynolds stress regime, the spectrum does not
change with wall distance. The straight line in the log-log
plot has the slope of -1, predicted for the equilibrium range
of the spectrum using scaling arguments (see Sreenivasan,

11 A5 will be shown in Figs 36 and 37, there is even more scatter in the v-
and yv-spectra when similarly plotted on semi-log plots.
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1989). The large-scale fluctuations outside this equilibrium
range constitute the so-called inactive motion mentioned
earlier. At the other end of the scale, the smaller eddies
(high wavenumbers) either obey the usual -5/3
Kolmogorov-law provided the Reynolds number is high
enough to create an inertial subrange, or simply be domi-
nated by viscosity at low Reynolds numbers.

In summary, only the u-turbulence spectra scale with in-
ner variables very close to the wall (y* < 15), while those
for v and yv do not. In the constant- stress layer and over a
wide range of Reynolds numbers, the spectrum of the longi-
tudinal velocity fluctuations has a -1 slope in the equilib-
rium range of eddies.

6.4 Skewness and flatness factors

The third and fourth moments of a random signal give use-
ful statistical information regarding the temporal distribu-
tion of its fluctuations around an average value. When
nondimensionalized using the root-mean-square value of
the fluctuations, these become the skewness and flatness
factors, respectively. For example, for the streamwise ve-
locity fluctuations the skewness and flatness factors are de-
fined as follows:

S, =10/ (ums)® (33)

Fpy= (") ()

Similar expressions can be written for the skewness and
flatness factors for the other two velocity components, the
Reynolds stress, the velocity derivative with respect to time,
etc.

For a Gaussian signal, the probability distribution is
symmetric around the mean value and those factors are re-
spectively § = 0 and F' = 3. A nonzero skewness factor indi-
cates the degree of temporal asymmetry of the random
fluctuations, eg acceleration versus deceleration or sweep
versus ejection. Flatness factor larger than 3 is associated
with a peaky signal as for example that produced by in-
termittent turbulent events.
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Fig 38. Power spectra of the streamwise velocity fluctuations at v* = 125.
Channel flow data from Wei and Willmarth (1989).
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Unlike the second and higher even moments, the third
and all higher odd-number moments retain the sign infor-
mation and thus contain valuable statistical information re-
lated to the coherent structures. The skewness of a turbu-
lence quantity can be thought of as representing the flux of
a stress which is directly attributable to coherent structures.

For example, u” is the streamwise flux of the streamwise

turbulence kinetic energy u?, —u?v is the streamwise flux

of the Reynolds stress v, —uv? is the normal flux of uv,
etc.

A combination of positive w® and negative v s
associated with sweep events, while a combination of

negative u> and positive v’ is attributable to ejection

events (see Section 7). Similarly, —u*v and —wo? denote
streamwise flux and outward transport of shear stress,
respectively. Note that, via triple moments, structural
information can be extracted without ambiguity. That is,
without recourse to any subjective threshold setting as in
the so-called VITA and VISA--variable-interval time- or
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Fig 39. Power spectra of the normal velocity fluctuations at yt=125.
Channel flow data from Wei and Willmarth (1989).
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Fig 40. Power spectra of the Reynolds stress fluctuations at y* = 125,
Channel flow data from Wei and Willmarth (1989).
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Space-averaging techniques (Blackwelder and Kaplan,
1976), respectively. The flatness factor, on the other hand,
is always positive. Near the rotational/irrotational interface
of a turbulent boundary layer and in the near-wall region
where intermittent bursting events take place, the
normalized fourth moment attains large values.

Profiles of the skewness factor of the streamwise veloc-
ity fluctuations in the boundary-layer flow of Andreopoulos
et al (1984) are plotted in Fig 42 for four Reynolds numbers
in the range of Rey = 3624-15,406. High positive values of
S, are observed in the viscous sublayer, indicating the
skewed nature of the acceleration-dominated velocity fluc-
tuations there. As a result of the arrival of high-speed fluid
from regions away from the wall (sweep events), large
positive values of # occur more frequently than large nega-
tive values in the near-wall region. In the log region, the
skewness factor is only slightly different from that for a
Gaussian probability density distribution. Farther away
from the wall, the skewness is negative consistent with the
arrival of low-speed fluid from the wall region (de-
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Fig 41. Normalized power spectra of the streamwise velocity fluctuations.
Pipe flow data from Perry and Abell (1975) at different Reynolds numbers
and different distances from the wall.
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Fig 42. Profiles of skewness factor of streamwise velocity fluctuations at

four Reynolds aumbers (from Andreopoulos et al, 1984).
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celeration-dominated ejection events). Reynolds number
effects are stronger in the wake region of the flow where the
skewness is negative, although some effects penetrate all
the way to the edge of the viscous sublayer. Figure 42
indicates strong Reynolds number effects on the streamwise
flux of the longitudinal turbulence kinetic energy due to
both sweep and ejection events,

Kline (1967) has proposed that the near-wall value of S,
is related to the width of the low-speed streaks (Section
7.1). In low-Reynolds number flows, the most probable lo-
cation of the breakup stage of the bursting process is at y* =
15. According to the data in Fig 42, the value of S, changes
sign at that y* at Re, = 3624, but at the higher Reynolds
number of Rey = 15.4x103, the skewness does not change
sign till y* =~ 200.

Smits et al (1989) have compared the skewness factor S,
for subsonic low-Reynolds number (M, = 0.1; Re, = 5x10%)
and supersonic high-Reynolds number (M, = 2.9; Rey =
80x10%) turbulent boundary layers. Since the effect of Mach
number appears to be weak and can be taken into account
by considering the local fluid properties, the comparison
primarily shows the effect of Re,. It is interesting that in
Smits ef al's experiments, S, changes sign at y/5 = 0.17 for
Rey = 5x10%, but at y/8 = 0.68 for Rey = 80x103. Thus, the
point of cross-over from the sweep- to the ejection-
dominated motions moves outward as Re, increases and
shows no sign of reaching an asymptote. Admittedly, the
available data are scarce, but it is clear that Reynolds
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Fig 43. Skewness of the velocity derivative du/dt in the inner region of a
pipe flow (from Elera and Dumas, 1978).
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number effects on third- and higher-order moments are
stronger than those on the first- and second-order moments.

In isotropic turbulence, the skewness of the velocity de-
rivative du/dx signifies the inertial transfer of energy across
the wavenumber domain and is proportional to the produc-
tion of mean-square vorticity by vortex stretching. For the
anisotropic wall-bounded flow, Sreenivasan (1989) argues
that such interpretations may hold at least qualitatively.
Figure 43 depicts S, for the pipe flow data of Elena and

Dumas (1978). In a high-shear flow, time derivative is very.

roughly related to space derivative through the Taylor's fro-
zen flow hypothesis. The skewness profile in Fig 43 is
typical and peaks at roughly S, ., = 1 around y* = 12, in-
dicating strong nonlinear effects, or vortex stretching, in the
same region where production of turbulence kinetic energy
also reaches a maximum. The value of S, ,, drops to 0.4 in
the outer layer and towards zero at the wall, Similar trends
are observed in channel flows (Comte-Bellot, 1963) and
boundary layers (Ueda and Hinze, 1975).

For the reasons indicated in Section 6.1, Andreopoulos ef
al (1984) measured the normal velocity fluctuations at the
single low Reynolds number of Re, = 3624. Their results
for the skewness factor of the normal-velocity fluciuations
are depicted in Fig 44. Unlike the skewness of the stream-
wise velocity fluctuations, the value of S, is negative near
the wall and positive in the outer flow region, signaling the
more frequent occurrence of negative and positive normal
velocity fluctuations in the inner and outer layer, respec-
tively. The skewness is again near zero in the overlap
region,

Andreopoulos ef al's (1984) data follows the general
trends of those measured by Gupta and Kaplan (1972), but
differ somewhat from the data of Kreplin and Eckelmann
(1979) and more strongly from those due to Kutateladze
and Khabakhpasheva (1978). The disagreements are par-
ticularly noticeable in the near-wall region, This is not sur-
prising considering the spatial and temporal probe-resolu-
tion difficulties associated with the measurement of higher-
order moments. The near-wall distribution of the skewness
of the normal velocity fluctuations is compared for the four
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Fig 44. Distribution of skewness factor of velocity fluctuations normal to
the wall (from Andreopoulos et al, 1984).
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different experiments in Fig 45, Note that a linear scale is
used for the abscissa in this figure. Except for the data of
Kutateladze and Khabakhpasheva (1978), S, is positive for
y* > 5 and negative for y* < 5. It is intriguing that as the
wall is approached, the increased viscous effects and wall
constrain are incapable of damping the wall-ward compo-
nent of the velocity fluctuations.

Profiles of the flatness factor of the streamwise velocity
fluctuations in the boundary layer flow of Andreopoulos et
al (1984) are plotted in Fig 46 for four different Reynolds
numbers in the range of Rey, = 3624-15,406. The kurtosis
has high values near the wall and in the outer layer,
indicating that the turbulence is highly intermittent in both
places. In the overlap region, F, is nearly 3, and Reynolds
number effects are weak. But Reynolds number effects are
noticeable in the buffer layer penetrating all the way to the
edge of the viscous sublayer and are much stronger in the
outer layer, much the same as the corresponding effects on
the skewness factor S, depicted in Fig 42,
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Table 1. Wall-pressure fluctuation statistics

a. Measurements

p'“/Uf 23-26 3.38 (Average)
Re, up to 4x104 Re ~10%,M<06
Laboratory Measurements Flight: Boeing 737 forward
(Willmarth, 1975b) (Bhatt, 1971)
b. Flat-Plate and Channel Simulations
p /U 23-24 28 19 27 14
Re, 353-505 576 300 1410  Re,=138x10*
LES DNS DNS
(Tsai & Leslie, (Spalart, 1988) (Kim et al, 1987)
1990}
¢. Structural Model
(Bandyopadhyay and Balasubramanian, 1994)
pJU? 1.28 1.26 3.59 2.32
Rep. 200 100 200 100
Vortex Model Ejection Ejection Sweep Sweep

6.5 Wall-pressure fluctuations

Important physics of the turbulent wall-bounded flow can
be learned from the measurements of the instantancous
pressure. Pressure fluctuations are often proposed as an im-
portant mechanism by which the outer region of a boundary
layer rould influence and even initiate dynamically signifi-

Flow
=P

Fig 47. Side view of a low-Reynolds number turbulent boundary layer, Reg

=725. Flat plate towed in a weter channel. Large eddies are visualized using
a sheet of laser and fluorescence dye (from Gad-el-Hak er al, 1984).
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cant events in the wall region. Additionally, pressure fluc-
tuations in a wall-bounded flow induce structural vibrations
on the surface and are believed to be responsible for radi-
ated noise. Solving practical engineering problems that deal
with reducing this flow-induced noise, for example to im-
prove the performance of sonar domes on submarines or to
suppress unpleasant noise in the interior of commercial air-
craft, requires documenting the important statistics of the
random pressure field, such as root mean square, spectrum,
and cross correlation.

The local static pressure fluctuations across a shear flow
cannot yet be measured. The only location where it can be
measured is at the wall. This is often advantageous since in-
formation on convective structures within the boundary
layer can be obtained nonintrusively by using wall-pressure
sensors. The subject of wall-pressure measurements has
been reviewed by Willmarth (1975b). Johansson et al
(1987) and Farabee and Casarella (1991) describe the cur-
rent status. The latter authors show that the applicable
scaling laws change with the frequency range of the spec-
trum. As anficipated earlier by Panton and Lineberger
(1974), the friction velocity and the boundary layer thick-
ness are the appropriate scales at low wavenumbers. At high
wavenumbers, the friction velocity and the viscous length-
scale seem to collapse the data (Robert, 1993; Panton and
Robert, 1993; 1994),

Reliable laboratory measurements of pressure fluctua-
tions are particularly difficult since extraneous freestream
turbulence and acoustic noise are unavoidably sensed by the
wall-mounted microphones. To partially alleviate this
problem, Panton er a/ (1980) conducted pressure measure-
ments on the fuselage of a sail plane. Contributions from
potential motion outside the boundary layer were measured
and show a slight Reynolds number dependence.

The state of the art of probe resolution is a much more
serious problem for wall pressure than it is in velocity-
based variables. For example, pressure sensors as large as
450 wall units have been used in the past. Schewe (1983)
used one of the smallest probes, having an effective diame-
ter of 19v/U, More recently, Lauchle and Daniels (1987)
used sensors with diameters in the range of 0.7-1.5 wall
units. However, the glycerin pipe-flow facility they utilized
was acoustically noisy, and elaborate noise-removal tech-
niques were used to process the pressure fluctuations data,
The wall-pressure spectra measured by Lauchle and Daniels
in the range of Reynolds numbers of Re, = 7000-16,500 are
consistent with the flow physics; higher Reynolds number
flow supports smaller scales and hence higher-frequency
pressure fluctuations. When non-dimensionalized with wall
variables, however, the spectra, in that range of Reynolds
numbers, seem to collapse.

Keith et al (1992) assert that attenuations resulting from
inadequate spatial resolution of a sensor are of primary con-
cern, Variations among different data sets are reduced at
higher frequencies when resolution effects are accounted
for. Keith et al clearly show the Reynolds number effects in
the scaling of the low-frequency portion of wall-pressure
spectra; while at low Reg(< 4.5x10%) a mixed scaling ap-
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plies, outer scaling holds better at higher Re, (> 4.5x10%).
In their work, the outer scaling of the low-frequency end of
the spectrum is related to the mixed scaling by the factor
(UT/Um)“. which decreases as Rey increases. This observed
change in the scaling laws with Reynolds number is intrigu-
ing. Inner scaling seems to be effective, on the other hand,
at the high-frequency portion of the specira over the entire
range of Reynolds numbers where reliable data are avail-
able.

Note that even a weak Reynolds number dependence in
wavenumber space will be accentuated in frequency space.
The reason being that a large eddy moving at a fast speed
would produce the same frequency as a small eddy moving
at a low speed. For that reason, Panton (1989) developed his
inner/outer theory in wavenumber-phase velocity space and
reasonable agreement with experimental data was observed
(Panton and Robert, 1994),

Table 1, adapted from Bandyopadhyay and
Balasubramanian (1994), is a summary of rms wall pres-
sure, normalized with the square of the friction velocity,
from measurements and simulations. Both the physical and
numerical experiments indicate a slight increase with
Reynolds number, a result that is also theoretically antici-
pated (Bradshaw, 1967). In the structural model of
Bandyopadhyay and Balasubramanian, higher Reynolds
number effects in p’ , are better simulated by higher voriex-
Reynolds number sweep motions.

7. COHERENT STRUCTURES

The classical view that turbulence is essentially a stochastic
phenomenon having a randomly fluctuating velocity field
superimposed on a well-defined mean has been changed in
the last few decades by the realization that the transport
properties of all turbulent shear flows are dominated by
quasi-periodic, large-scale vortex motions (Laufer, 1975;
Townsend, 1976; Cantwell, 1981). Despite the extensive re-
search work in this area, no generally accepted definition of
what is meant by coherent motion has emerged. In physics,
coherence stands for well-defined phase relationship. For
the present purpose we adopt the rather restrictive definition
given by Hussain (1986): a coherent structure is a con-
nected turbulent fluid mass with instantaneously phase-cor-
related vorticity over its spatial extent. In other words, un-
derlying the random, three-dimensional vorticity that char-
acterizes turbulence, there is a component of large-scale
vorticity which is instantaneously coherent over the spatial
extent of an organized structure. The apparent randomness
of the flow field is, for the most part, due to the random size
and strength of the different type of organized structures
comprising that field.

In a wall-bounded flow, a multiplicity of coherent struc-
tures have been identified mostly through flow visualization
experiments, although some important early discoveries
have been made using correlation measurements (eg,
Townsend, 1961; 1970; Bakewell and Lumley, [967).
Although the literature on this topic is vast, no research-
community-wide consensus has been reached particularly
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on the issues of the origin of and interaction between the
different  structures, regeneration mechanisms, and
Reynolds number effects. What follow are somewhat biased
remarks addressing those issues. At times diverse view
points will be presented but for the most part particular sce-
narios, which in the present authors' opinion are most likely
to be true, will be emphasized. The interested reader is re-
fetred to the large number of review articles available (eg,
Kovasznay, 1970; Laufer, 1975; Willmarth, 1975a; 1975b;
Saffman, 1978; Cantwell, 1981; Fiedler, 1986; 1988;
Blackwelder, 1988; Robinson, 1991). The last reference in
particular summarizes many of the different, sometimes
contradictory, conceptual models offered thus far by differ-
ent research groups. Those models are aimed ultimately at

Fig 48. Top view of a low-Reynolds number turbulent boundary layer; Ree

= 742. Wind tunnel experiment. Pockets, believed to be the fingerprints of
typical eddies, are visualized using dense smoke (from Falco, 1980).

Flow

Fig 49. Top view of a low-Reynolds number turbulent boundary layer; Reg

= 725. Flat plate towed in a water channel. Low-speed streaks are visualized
using a sheet of laser and fluorescence dye (from Gad-el-Hak et al, 1984).
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explaining how the turbulence maintains itself, and range
from the speculative to the rigorous but none, unfortunately,
is self-contained and complete. Furthermore, the structure
research dwells largely on the kinematics of organized mo-
tion and little attention is given to the dynamics of the re-
generation process.

7.1 Overview

With few exceptions, most of the available structural in-
formation on wall-bounded flows come from rather low-
Reynolds number experiments and numerical simulations.
Organized structures appear to be similar in all wall-
bounded flows only in the inner layer. The outer region of a
boundary layer is by necessity different from the core re-
gion of a pipe or channel flow. Before getting to the issue
of Reynolds number effects, an overall view, whose source
of information is predominately low-Reynolds number ex-
periments, is first presented. As will become clear through-
out the discussion following the present subsection, the
picture that emerges at high Reynolds numbers is quite dif-
ferent, and structural information gleaned from low-
Reynolds number physical and numerical experiments may
not be very relevant to high-Reynolds number flows,

In (low-Reynolds number) external flows, the turbulence
production process is dominated by three kinds of quasi-
periodic eddies: the large outer structures, the intermediate
Falco-Newman eddies,!? and the near-wall eddies.
Examples of these coherent structures visualized in rather
low-Reynolds number boundaty layets are depicted in Figs
47-49; Laser sheet illumination is used in all three photo-
graphs. The large eddies forming on a flat plate towed in a
water channel are seen in the side view in Fig 47. The flow
is from left to right. The artificially tripped boundary layer
has a Reynolds number at the observation station of Re, =
725, and is marked with fluorescein dye. The smoke-filled
boundary layer shown in top view in Fig 48 depicts the
characteristic pockets believed to be induced by the motion
of Falco-Newman eddies over the wall, In here, the experi-
ments are conducted in a wind tunnel at a momentum thic-
kness Reynolds number of Re, = 742, and the boundary
layer is again artificially tripped. Finally, the top view in
Fig 49 depicts the low-speed streaks in the near-wall region
~ of the same turbulent boundary layer préviously shown in
side view in Fig 47. Flow direction is again from left to
right.

The large, three-dimensional bulges (Fig 47) scale with
the boundary layer thickness, 8, and extend across the entire
layer (Kovasznay et gl, 1970; Blackwelder and Kovasznay,
1972). These eddies control the dynamics of the boundary
layer in the outer region, such as entrainment, turbulence
production, etc. The large eddies are characterized by a
sharp interface and a highly contorted surface which exhib-
its a significant amount of folding (Paiziz and Schwarz,
1974) and has a fractal dimension of close to 2.4
(Sreenivasan ef al, 1989). They appear randomly (quasi-pe-

12 Identified independently at about the same time by Falco (1974) and
Newman (1974).
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riodically) in space and time, and seem to be, at least for
moderate Reynolds numbers, the residue of the transitional
Emmons spots (Zilberman et al, 1977, Gad-el-Hak et al,
1981). Note, however, that at higher Reynolds numbers
(Rey ~17,000) the very existence of the large eddy as an
isolated coherent structure has been questioned by Head and
Bandyopadhyay (1981), and this point will be revisited in
Section 7.2.2.

The Falco-Newman eddies are also highly coherent and
three-dimensional. Falco (1974; 1977) named them typical
eddies because they appear in wakes, jets, Emmons spots,
grid-generated turbulence, and boundary layers in zero, fa-
vorable and adverse pressure gradients. They have an in-
termediate scale of about 100 wall units. The Falco-
Newman eddies appear to be an important link between the
large structures and the near-wall events. In the plan view
shown in Fig 48, smoke fills the near-wall region of a
boundary layer and the roughly circular regions devoid of
marked fluid are called pockets.!? Falco (1980) asserts that
these pockets are the footprints of some outer structures that
induce fluid towards the wall. Robinson ef al (1989) ana-
lyzed the data base generated from the direct numerical
simulations of Spalart (1988). They concur that the pockets
are the signature of local wall-ward motions, evidenced by
spanwise divergence of streamlines, above regions of high
wall-pressure. Low-pressure regions, on the other hand, oc-
cur along lines of converging streamlines associated with
outward motion.

The third kind of eddies exists in the wall region (0 < y*
< 100) where the Reynolds stress is produced in an intermit-
tent fashion. Half of the total production of turbulence ki-
netic energy —uv (dU/dy) takes place near the wall in the
first 5% of the boundary layer at typical laboratory
Reynolds numbers (smaller fraction at higher Reynolds
numbers), and the dominant sequence of intense organized
motions there are collectively termed the bursting phe-
nomenon. This dynamically significant process, identified
during the 1960s by researchers at Stanford University
(Kline and Runstadler, 1959; Runstadler et al, 1963; Kline
et al, 1967; Kim et al, 1971; Offen and Kline, 1974; 1975),
was reviewed by Willmarth (1975a) and Blackwelder
(1978), and most recently by Robinson (1991).

Qualitatively, the process, according to at least one
school of thought, begins with e¢longated, counter-rotating,
streamwise vortices having diameters of approximately
40v/U.. This estimate for the diameter of the vortex is ob-
tained from the conditionally averaged spanwise velocity
profiles reported by Blackwelder and Eckelmann (1979).
There is a distinction, however, between vorticity distribu-
tion and a vortex (Saffman and Baker, 1979; Robinson ef
al, 1989; Robinson, 1991), and the visualization results of
Smith and Schwartz (1983) may indicate a much smaller
diameter. In any case, the counter-rotating vortices exist in
a strong shear and induce low- and high-speed regions be-
tween them. The vortices and the accompanying eddy

13 These undulations are very similar to the so-called folds observed by
Perry et al. (1981) in turbulent spots.

Downloaded From: http://appliedmechanicsr eviews.asmedigitalcollection.asme.or g/ on 09/20/2017 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use



Appl Mech Rev vol 47, no 8, August 1994

structures occur randomly in space and time. However,
their appearance is sufficiently regular that an average
spanwise wavelength of approximately 80 to 100v/U, has
been identified by Kline ef a/ (1967) and others.

It might be instructive at this point to emphasize that the
distribution of streak spacing is very broad. The standard of
deviation is 30 - 40% of the more commonly quoted mean
spacing between low-speed steaks of 100 wall units. Both
the mean and standard deviation are roughly independent of
Reynolds number in the rather limited range of reported
measurements (Re, = 300-6500, see Smith and Metzler,
1983; Kim er al, 1987). Butler and Farrell (1993) have
shown that the mean streak spacing of 100v/U_ is consistent
with the notion that this is an optimal configuration for ex-
tracting “the most energy over an appropriate eddy turnover
time.” In their work, the streak spacing remains 100 wall
units at Reynolds numbers, based on friction velocity and
channel half-width, of a* = 180-360.

Kim et al (1971) observed that the low-speed regions
(Fig 49) grow downstream, lift up and develop inflectional
U(y) profiles. At approximately the same time, the inter-
face between the low- and high-speed fluid begins to oscil-
late, apparently signaling the onset of a secondary instabil-
ity. The low-speed region lifts,up away from the wall as the
oscillation amplitude increases, and then the flow rapidly
breaks up into a completely chaotic motion. The streak
oscillations commence at y* = 10, and the abrupt breakup
takes place in the buffer layer although the ejected fluid
reaches all the way to the logarithmic region. Since the
breakup process occurs on a very short time scale, Kline et
al (1967) called it a burst. Virtually all of the net produc-
tion of turbulence kinetic energy in the near-wall region oc-
curs during these bursts.

Corino and Brodkey (1969) showed that the low-speed
regions are quite narrow, ie, 20v/U_, and may also have
significant shear in the spanwise direction. They also indi-
cated that the ejection phase of the bursting process is fol-
lowed by a large-scale motion of upstream fluid that ema-
nates from the outer region and cleanses (sweeps) the wall
region of the previously ejected fluid. The sweep phase is,
of course, required by the continuity equation and appears
to scale with the outer-flow variables. The sweep event
seems to stabilize the bursting site, in effect preparing it for
a new cycle.

Considerably more has been learned about the bursting
process during the last decade. For example, Falco (1980:
1983) has shown that when a typical eddy, which may be
formed in part by ejected wall-layer fluid, moves over the
wall it induces a high wo sweep (positive « and negative v).
The wall region is continuously bombarded by pockets of
high-speed fluid originating in the logarithmic and possibly
the outer layers of the flow. These pockets appear to scale,
at least in the limited Reynolds number range where they
have been observed, Rey, = O[1000], with wall variables and
tend to promote and/or enhance the inflectional velocity
profiles by increasing the instantaneous shear leading to a
more rapidly growing instability. The relation between the
pockets and the sweep events is not clear, but it seems that
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the former forms the highly irregular interface between the
latter and the wall-region fluid. More recently, Klewicki ef
al (1994) conducted a four-wire hot-wire probe measure-
ments in a low-Reynolds number canonical boundary layer
to clarify the roles of velocity-spanwise vorticity field inter-
actions regarding the near-wall turbulent stress production
and transport,

Other significant experiments were conducted by
Tiederman and his students (Donohue er al, 1972;
Reischman and Tiederman, 1975; Oldaker and Tiederman,
1977; Tiederman ef al, 1985) and Smith and his colleagues
(Smith and Metzler, 1982; 1983; Smith and- Schwartz,
1983). The first group conducted extensive studies of the
near-wall region, particularly the viscous sublayer, of chan-
nels with Newtonian as well as drag-reducing non-.
Newtonian fluids. Smith's group, using a unique, two-cam-
era, high-speed video system, was the first to indicate a
symbiotic relationship between the occurrence of low-speed
streaks and the formation of vortex loops in the near-wall
region.

7.2 Open issues

There are at least four unresolved issues regarding coherent
structures in wall-bounded flows, not all are necessarily in-
dependent: How does a particular structure originate; how
do different structures, especially the ones having disparate
scales, interact; how does the turbulence continue to regen-
erate itself; and does the Reynolds number affect the differ-
ent structures in any profound way? The primary difficulty
in trying to answer any of those queries stems from the
existénce of two scales in the flow that become rather dis-
parate at large Reynolds numbers (Fig 2). The closely re-
lated issues of origin, inner/outer interaction and regenera-
tion will be addressed in the following two subsections.
Reynolds number effects on the coherent structures are re-
served for the four subsections in Section 7.3.

7.2.1 Origin of different structures

Faced with the myriad of coherent structures existing in the
boundary layer, a legitimate question is where do they all
come from and which one is dynamically significant?
Sreenivasan (1988) offers a glimpse of the difficulties as-
sociated with trying to answer this question. The structural
description of a turbulent boundary layer may not be that
complicated, however, and some of the observed structures
might simply be a manifestation of the different aspects of a
more basic coherent structure. For example, some research-
ers argue that the observed near-wall streamwise vortices
and large eddies are, respectively, the legs and heads of the
omnipresent hairpin vortices (Head and Bandyopadhyay,
1981). Nevertheless, that still leaves us with a minimum
number of building blocks that must be dealt with.

If the large eddies are assumed to be dynamically sig-
nificant, then how are they recreated? It is easy to argue
that the conventional laminar-to-turbulent transition can not
be responsible, because the same large eddies appear even
in heavily tripped boundary layers where thé usual transi-
tion routes are by-passed. Wall events can not be responsi-
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ble for creating large eddies because of their extremely
small relative scale at high Reynolds number, Furthermore,
no hierarchical amalgamation of scales has been observed
to justify such proposition.

If, alternatively, wall events are assumed to dominate,
then where do the streamwise vortices or the low-speed
streaks come from and what mechanism sustains the burst-
ing cycle? Mechanisms that assume local instability can not
be valid at large Reynolds numbers where the wall layer is,
say, 0.1% of the boundary layer thickness,!4 and it is diffi-
cult to conceive that 99.9% of the boundary layer has no
active role in the generation and maintenance of turbulence,
On the other hand, assuming the bursting events are trig-
gered by the large eddies brings us back to the original
question of where do the latter come from.

The above difficulties explain the lack of a self-consis-
tent model of the turbulent boundary layer, despite the
enormous effort expended to establish one. None of the ex-
isting models is complete in the sense that none accounts
for each aspect of the flow in relation to every other aspect.
Developing a complete, self-consistent model is more than
an academic exercise; for a proper conceptual model of the
flow gives researchers the necessary tools to compute high-
Reynolds number practical flows using the Reynolds-aver-
aged Navier-Stokes equations and to devise novel flow

.control strategies as well as to extend known laboratory-
scale control devices to field conditions.

7.2.2 Inner/outer interaction and regeneration mechanisms

There is no doubt that significant interactions between the
inner and outer layers take place. On energy grounds alone,
it is known that in the outer layer the dissipation is larger
than the turbulence kinetic energy production (Townsend,
1976). It is therefore necessary for energy to be transported
from the inner layer to the outer layer simply to sustain the
latter, How that is accomplished and whether coherent
structures are the only vehicle to transport energy is not
clear, but two distinct schools of thought have emerged. In
the first, the large-scale structures dominate and provide the
strong buffeting necessary to maintain the low-Reynolds
number turbulence in the viscous region (Re < 30). In the
second view, rare, intense wall-events are assigned the ac-
tive role and, through outward turbulent diffusion, provide
the necessary energy supply to maintain the outer region.
As mentioned in the previous subsection, both views have
some loose ends.

Based on a large number of space-time two-point corre-
lation measurements of » and v, Kovasznay et al (1970)
suggested that the outer region of a turbulent boundary
layer is dominated by large eddies. The interface between
the turbulent flow and the irrotational fluid outside the
boundary layer is highly corrugated with a root-mean-
square slope in the (x-y)-plane of roughly 0.5. The three-
dimensional bulges are elongated in the streamwise direc-
tion with an aspect ratio of approximately 2:1, and have a

14 This is the near-wall region of thickness y = 30w/U. as a percentage of
the boundary layer thickness when the Reynolds number is Rey =
100,000 (see Fig 6).
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characteristic dimension, in the wall-normal direction, of
between 0.58 and 8. They appear quasi-periodically and are
roughly similar to each other. Kovasznay et al allowed that
the large eddies are passive in the sense that the wall events
and not these eddies are responsible for producing the
Reynolds stress. Kovasznay (1970) advanced the hypothesis
that wall bursting starts a chain reaction of some sort at all
intermediate scales culminating into a sequence of amalga-
mations which eventually leads to the large structures. As
mentioned earlier, such hierarchical amalgamation of scales
has not been directly observed in the laboratory.

Head and Bandyopadhyay (1981), on the other hand,
suggested that the very existence of the large eddies at high
Reynolds numbers is in doubt. Their combined flow visu-
alization/hot-wire probe experiments are unique in that an
unusually large range of Reynolds number was investigated,
Rey = 500-17,500, allowing them to clarify unambiguously
Reynolds number effects on the structure of the boundary
layer, Head and Bandyopadhyay maintained that a large
structure seen in typical flow visualization experiments is
nothing but the slow overturning of a random collection of
smaller-scale hairpin vortices, just a few or even a single
isolated vortex loop at low Reynolds numbers (say, Rey <
1000) but a large number of them at high Reynolds numbers
(say, Rey > 5000). This is sketched for typical low- and
high-Reynolds number boundary layers in Figs 50a and
50b, respectively. A brisker rate of rotation of the isolated
(fat) vortex loop is observed at the lowest Reynolds num-
ber, consistent with prior observations of large eddies in
low-speed experiments. The hairpins are inclined at around
45° to the plane of the flow over a major part of the layer
thickness. In Head and Bandyopadhyay's (1981) view, the
entire turbulent boundary layer consists very largely of
vortex loops that become increasingly elongated as the
Reynolds number increases (see Fig 3). The so-called large
eddies, on the other hand, do not appear to exhibit any par-
ticular coherent motion beyond a relatively slow overturn-
ing or toppling due to shear.

Corroborative evidence for the hairpin angle of inclina-
tion of 45° comes from the simultaneous, multiple-point
hot-wire measurements of Alving et a/ (1990) in both a ca-
nonical turbulent boundary layer and a boundary layer re-
covering from the effects of strong convex curvature. Their
cross-correlation results are consistent with the observation
of large-scale structures spanning the entire shear layer and
inclined at angles in the range of 35%45° near the outer
edge of the boundary layer, but at continuously decreasing
angles as the wall is approached.

The sketch in Fig 50b for a typical large eddy at high
Reynolds number is consistent with the statistical findings
of Brown and Thomas (1977), who have shown by using
conditional averaging techniques that a typical large struc-
ture in a turbulent boundary layer has an upstream rota-
tional/irrotational interface inclined at 18° to the flow di-
rection. Head and Bandyopadhyay (1981) have observed
such individual structures only at higher Rey (> 5000). It is
possible to arrive precisely at this slope by modeling the
large structure to be composed of hairpin vortices formed at
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regular intervals (Bandyopadhyay, 1980). Such large struc-
tures composed of many hairpin vortices have not been ob-
served in the low-Reynolds number DNS simulations.

Samples of Head and Bandyopadhyay's (1981) visuali-
zation experiments at three Reynolds numbers are depicted
in Fig 51. A laser light sheet illuminates a section of the
smoke-filled boundary layer making 45° with the down-
stream plane. The vortex loops seen in this figure at Re, =
600, 1700 and 9400 correspond roughly to the vortex loop,
horseshoe vortex and hairpin vortex sketched previously in
Fig 3 of the present paper. The increased elongation of the
vortex loops as the Reynolds number increases over one or-
der of magnitude is evident in the three photographs in Fig
51.

Robinson (1991) summarizes many of the conceptual
models advanced by different researchers to explain how a
wall-bounded turbulent flow maintains itself. Among those
reviewed are the models advocated by Willmarth and Tu
(1967), Black (1968), Offen and Kline (1975), Hinze
(1975), Praturi and Brodkey (1978), Thomas and Bull
(1983), Acarlar and Smith (1987a; 1987b), and Robinson
(1990). Some of those conceptual models emphasize a par-
ticular aspect of the flow dynamics as for example the
bursting cycle, while others are more ambitious and attempt
to include both the inner and outer structures and their in-
teraction.

Robinson (1991) also lists significant contributions that
utilize structural information to predict statistical quantities
or invoke a simplified form of the governing equations to
model the dynamics of the near-wall turbulence-production
process. Among the predictive models discussed are those
by Landahl (1967; 1980; 1990), Townsend (1976), Perry
and Chong (1982), Perry et al (1986; 1989), Walker and
Herzog (1988), Aubry et al (1988), Hanratty (1989), and
Berkooz ef al (1991).

Other, potentially useful, predictive models not dis-
cussed by Robinson (1991) include those based on stability
considerations (Malkus, 1956; 1979), based on the turbu-
lence energy equation (Bradshaw et al, 1967), based on the
u-v velocity-quadrant statistical description of the organ-
ized motions (Nagano and Tagawa, 1990), and based on a
single hairpin-like vortex in a unit domain of turbulence
production (Bandyopadhyay and Balasubramanian, 1993;
1994). These models account explicitly for Reynolds num-
ber effects and might, therefore, be useful for practical
Reynolds numbers.

- Flow 72 5
%
AN
(a) (b)

Fig 50. Sketch of large eddy structures as a collection of smaller-scale
hairpin vortices (from Head and Bandyopadhyay, 1981): (a) Typical low-
Reynolds number boundary layer; (b) Typical high-Reynolds number
boundary layer.
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Inevitably in almost all the conceptual models the omni-
present hairpin vortex (or horseshoe at low Re) plays a key
role. Such a vortex has been proposed earlier by
Theodorson (1952) on intuitive grounds as the primary
structure responsible for turbulence production and dissipa-
tion in the boundary layer. His fornado-like vortices form
astride near-wall, low-speed regions of fluid and grow out-
ward with their heads inclined at 45° to the flow direction.

Black (1966; 1968) conducted a more rigorous analytical
work to show the fundamental role of hairpin vortices in the
dynamics of wall-bounded flows. His basic premise is that
the primary role of the random turbulent motion is not to
transfer mean momentum directly, but rather to excite
strong, three-dimensional instability of the sublayer which
is a powerhouse of vorticity. In Black's model, trains of dis-
crete horseshoes are generated by repetitive, localized non-
linear instabilities within the viscous sublayer. The vortical
structures are shed and outwardly migrate from the near-
wall region in a characteristic, quasi-frozen spatial array.

Re, = 600
REQ = 1700
Ree = 9400

Fig 51. Hairpin structures in a smoke-filled turbulent boundary layer at
three Reynolds numbers. Sheet of laser illuminates a section making 45°
with downstream plane (from Head and Bandyopadhyay, 1981).
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The horseshoes inviscidly induce an outflow of low-speed
fluid from within the vortex loops, creating motions that
would be seen by a stationary probe as sharp, intermittent
spikes of Reynolds stress. Because of the continuous crea-
tion of new vortex loops that replace older elements, the
lifetime of the vortical array is much longer than that for its
individual members. According to Black (1968), such or-
ganized structures are responsible for the efficient mass and
momentum transfer within a turbulent boundary layer.

Sreenivasan (1987) offers a similar model to that of
Black (1968). The essential structures of the boundary
layer, including the hairpin vortices, result from the insta-
bility of a caricature flow in which all the mean flow vor-
ticity has been concentrated in a single fat sheet.
Sreenivasan's conclusions were briefly discussed in Section
4 of the present article.

As a parting remark in this subsection, it might be in-
structive to recall that hairpin vortices play an important
role also in the laminar-to-turbulent transition of boundary
layer flows. Essentially, these hairpins are the result of the
nonlinear tertiary instability of the three-dimensional
peak/valley pattern which itself is the secondary instability
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Fig 52. Mean bursting frequency versus Reynolds number (from
Blackwelder and Haritonidis, 1983): (a) Outer-flow variables scaling; (b)
Inner-flow variables scaling. The inverted triangles represent three
additional data points from an untripped boundary layer.
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of the primary Tollmien-Schlichting waves (Klebanoff ef
al, 1962).

7.3 Reynolds number effects

The last question to be discussed in this section relates to
Reynolds number effects on the coherent structures in wall-
bounded flows. There are several facets to that issue and the
present section is divided into four subsections. To be ad-
dressed below are proper scaling for the period between
bursts, possibility of profound structural changes after the
well known Reynolds number limit of Rey = 6000, small-
structures existing in the outer layer, and Reynolds number
effects on inner structures.

7.3.1 Bursting period

Because of the problems of threshold setting and probe
resolution, bursting frequency and its scaling have become
the source of continuing controversy. Cantwell (1981),
based on a review of available literature, have concluded
that this frequency scales on outer variables, thus establish-
ing a strong link between the inner and outer regions of a
wall-bounded flow. On the other hand, Blackwelder and
Haritonidis (1983) have shown that the frequency of occur-
rence of these events scales with the viscous parameters
consistent with the usual boundary layer scaling arguments.
Their results obtained with a hot-wire probe whose length

varied in the range of ¢* = 4.5-20!% as the Reynolds
number increased in the range of Rey, = 1000-10,000 are

depicted in Fig 52. In Fig 52a, outer variables are used to
normalize the bursting frequency (or its inverse, the period
between bursts). The non-dimensional frequency increases
with Reynolds number, thus clearly indicating that outer
scaling is not applicable. On the other hand, the same data
plotted in Fig 52b using the viscous time scale to normalize
the frequency indicate the validity of inner scaling.!6 Thus,
the properly non-dimensionalized bursting period is inde-
pendent of the Reynolds number, in agreement with the ob-
servations of Kline ef al (1967), Corino and Brodkey
(1969), Donohue et al (1972), Achia and Thompson (1977),
and Blackwelder and Eckelmann (1978). Blackwelder and
Haritonidis (1983) have suggested that past erroneous re-
sults are caused by insufficient spatial resolution of the sen-
sors used to detect the bursts.

Based on measurements in the atmospheric boundary
layer where the Reynolds number is several orders of
magnitude higher than in typical laboratory expetiments,
Narasimha and Kailas (1986; 1987; 1990) still maintain that
bursting events scale on outer variables. To do otherwise,
the imsufficient time resolution of the atmospheric data
would simply not have allowed the detection of any dy-
namically significant events. Narasimha and Kailas cite
other laboratory experiments to support their position (eg,

15 The upper end of this range might not provide sufficient probe
resolution according to the criterion established earlier in the present
paper.

16 Three additional data points (inverted triangles) from an untripped
boundary layer are also shown in Fig 52b. -
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Rao et al, 1977; Ueda and Hinze, 1975; Willmarth, 1975a;
Shah and Antonia, 1989; Rajagopalan and Antonia, 1984).

Adding to the present confusion, Bandyopadhyay (1982)
has shown that the bursting period is not a universal func-
tion and both inner and outer variables are involved in its
scaling with Re,. He reviewed existing data and concluded
that a universal value of the bursting frequency scaled with
either inner or outer variables in various boundary layers
ranging from relaminarized to separated does not exist.
Since a turbulent boundary layer is characterized by three
integral variables, C,, H, and Re,, verification of universali-
ty with Re, alone 1s clearly inadequate, and the apparent
confusion stems in part from the lack of experiments over a
sufficiently wide range of shape factors H. Johansson and
Alfredsson (1982) have also suggested that the bursting pe-
riod scale with intermediate scaling proportional to the geo-
metric mean of the inner and outer scales, It should be not-
ed, however, that within the framework of an asymptotic
theory mixed variables have little or no physical
significance.

The arguments by both Blackwelder and Haritonidis
(1983) and Narasimha and Kailas (1987) are compelling,
and the issue of scaling of the bursting events must, for the
moment at least, stay open. The laboratory experiments of
the former group are well controlled but the range of
Reynolds numbers and range of shape factors investigated
are not large enough. The latter group experiments are
conducted with sufficient probe resolution but the atmo-
sphere can neither be controlled nor fully documented.
Moreover, the effects of roughness on the scaling is simply
not known. Controlled high-Reynolds number experiments
using smooth walls and probes with sufficient resolution
should settle the question.

7.3.2 High Reynolds number

Does the boundary layer structure change when Rey >
6x103? The Reynolds number variations of due to Coles
(1962) were reproduced in the present paper in Figs 13 and
14 up to values of 15x10% and 50x103, respectively. Fig 13
does suggest that an asymptotic state is reached approxima-
tely when Re, > 6x10°. But, the higher Reynolds number
data in Fig 14 shows that beyond that limit, AU* drops,
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Fig 53, Comparison of the shear correlation coefficient in a high- and a
low-Reynolds number boundary layers (from Smits, 1990).
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although very slowly compared to the rise rate for Rey <
6x10°. The gradual departure of AU* from the apparent low
asymptote suggests that some new effects are appearing in
the turbulence production process at approximately Reg > (6
to 15)x10°. Experiments conducted in several different fa-
cilities are briefly described below and they show that pro-
found changes in the coherent structures of different wall-
bounded flows might indeed take place at very high
Reynolds numbers,

Relevant to the issue of structural changes when Reg >
6x103, is the recent assertion by Kailasnath (1993) that the
skin friction, the pressure fluctuations and the mean-
velocity profiles all show a distinct change of behavior at
about the same Reynolds number. For example, a power-
law fit to existing skin-friction data for both boundary
layers and pipe flows!? indicates a break point, at Rey »
5000, that separates two ranges of Reynolds numbers. This
and other evidence prompted Kailasnath (1993) to propose
a transitional behavior for wall-bounded flows from a low-
to a high-Reynolds number regime and to suggest further
that the turbulence regeneration mechanism is different in
the two regimes.

The results of Head and Bandyopadhyay (1981) dis-
cussed earlier indicate that the hairpin structures exhibit
strong dependence on Reynolds number for Rey < 7000, and
hence the hairpins are atypical. At higher Reynolds num-
bers, on the other hand, the hairpin vortex is found unam-
biguously. In Head and Bandyopadhyay's view, Falco's
(1977) typical eddies are merely the longitudinal cross-sec-
tions of the tips of the hairpins. Perry and Chong (1982) and
Perry et al (1986) concur with this view, Their model of the
turbulent boundary layer emphasizes a hierarchy of hairpin
eddies as the essential structure of the outer region. In
wavenumber space, the analogous idea of a hierarchy of in-
teracting scales and energy transfer from large eddies to
smaller ones is, of course, not new and has been proposed
as carly as 1920 by Richardsonl® and formalized by
Kolmogorov (1941a).

Turbulent boundary layers ranging from relaminarized to
separated cover the entire range of possible shape factor H.
The statistical properties of the turbulent/irrotational fluid
interface as well as the bursting period in such diverse
layers can be described by H (Fiedler and Head, 1966;
Bandyopadhyay, 1982). As can be expected, the location of
the maximum deviation of the mean velocity from the
logarithmic law also correlates with the mean location of
the intermittent layer. Changes in the properties of the inter-
mittent layer can take place when H drops below 1.3, that is
approximately when Re, > 10x103. This is supported by the
flow visualization results of Head and Bandyopadhyay
(1981) at Rey = 17.5x103, which shows that the outer part of
the boundary layer is noticeably sparser: fewer of the hair-

17 The pipe Reynolds number based on its radius and the centerline
velocity could be related to an equivalent Reynolds number based on the
momentum thickness.

18 Richardson's (1920; 1922) poetic description (widely recited but often
misquoted) of the turbulent eddies within a cumulus cloud reads: Big
whirls have little whizls that feed on their velocity, and little whirls have
lesser whirls and so on to viscosity.
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Fig 54. Comparison of the intermittency factor in a high- and a low-
Reynolds number boundary layers (from Smits, 1990).

pin vortices reach & although more of them are produced
per unit (dimensional) wall area. Figure 53, which shows
the variations of the shear correlation coefficient across a
subsonic boundary layer and a supersonic one, seems also
to echo that, as the Reynolds number is drastically
increased, #- and v-fluctuations are not as well correlated in
the outer layer. Note that the trends in this figure are
primiraly due to changing the Reynolds number; the effect
of varying the Mach number has already been accounted for
by considering local fluid properties.

In high-speed, high-Reynolds number turbulent boundary
layers, the mean location of the intermittent layer and its
standard deviation change significantly according to the
results of Owen et al (1975) at M, = 7.0 and Re, = 85x10°.
This is shown in Fig 54, where the supersonic data are
compared to the low-Reynolds number, low-Mach number
results of Kiebanoff (1954). The intermittency profile for
the supersonic boundary layer is clearly fuller, Furthermore,
at these high Reynolds numbers, the boundary layer
structures do not exhibit much overturning motion which is
typical of lower Reynolds numbers. In the statistical
measurements of conventional boundary layer properties at
high Reynolds numbers these changes may not always seem
dramatic, but their critical importance might lie in the
efficiency of outer-layer or other control devices for drag
reduction (Section 8.3.1).

Morrison et al (1971) compared the sublayer spectra,

P(k;‘ NO ), at low- and high-Reynolds number pipe flows.

Their results are depicted in Figs 55 and 56.1° Over a
sufficiently wide range of Reynolds numbers, the shape of
the two-dimensional spectra expressed in wall-layer
variables is not universal. This result contradicts the earlier
low-Reynolds number, one- and two-dimensional spectral
observations made by Bakewell and Lumley (1967) and
Morrison (1969). As the Reynolds number is increased from
Re, = 10,000 to 100,000, more energy appears in the low-
frequency, low-wavenumber region. The additional energy
results from disturbances which convect at twice the
characteristic velocity of the sublayer of 8U. The high
Reynolds numbers appear to have the effect of randomizing
the phase velocity whereby the disturbances are no longer

19 Although the spectra in Fig 56 were measured outside the viscous
sublayer (at y* = 13.9), Morrison et al (1971) argue that the energy
distribution at the sublayer edge is not substantially different from the
distribution within the viscous sublayer.
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phase-correlated in the sublayer. This additional evidence
also suggests much change in the turbulence production
mechanism at very high Reynolds numbers. In fact,
Morrison ef al (1971) have strongly suggested that the low-
speed streaks are unique to low-Reynolds number wall-
bounded flows. Streaks would no longer appear at very high
Reynolds numbers, where a phase-correlated, wave-like
turbulence might not exist within the viscous sublayer.

Using a rake of X-wires and conditional averaging
techniques, Antonia et al (1990) have examined the effects
of Reynolds number on the topology of the large structures
in the range 1360 < Rey < 9630. The instantaneous
longitudinal sectional streamlines in a moving frame of
reference contain many rotational structures O[6/2] at the
lowest Reynolds number, Very significant Re, effects can
be observed in the instantaneous frames (see their Fig 5).
As Re, is gradually increased to 9630, the large rotational
structures become much smaller and no longer dominate the
outer layer. When the large structures are selectively
sampled and averaged, their foci are found to be more
circular at lower Reynolds numbers. As Re, is increased
from 1360 to 9630, the location of the foci moves closer to
the wall from 0.838 to 0.788. This is consistent with the
effect of Reynolds number on the mean location of the
intermittent layer, for similar values of the shape factor 7
(Fiedler and Head, 1966).

7.3.3 Small structures in outer layer

In this subsection, a relation is developed relating the ratio
of outer to inner scales to Reynolds number changes.
Reynolds number effects on small structures existing in the
outer layer are then discussed. Finally, brief remarks are
made on vortex-vortex interaction in the outer region.

The boundary-layer thickness in wall units, §*,20 is
related to the Reynolds number Re, via the skin-friction
coefficient and the ratio of boundary layer thickness to
momentum thickness:

SU. U, &
+ = T T —R 35
o v u, 6 ‘e (33)
c 1
78
5+s(7’°) ~6-Re9 (36)

For a smooth flat plate, an approximate empirical relation
can be obtained by using the modified pipe resistance
formula viz ¢, = 0.0296 (Re,)* and the 1/7"-power-law
velocity profile. The ratio of the outer scale to inner scale is
thus given by:

&t = 1.168 (Rey)*®7 37

Figure 57, taken from Bandyopadhyay (1991), shows that
Eq 37 describes the data over the entire Reynolds number
range where measurements are available.

20 The notation Re" is also used as discussed in Section 3.
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Falco (1977) used simultaneous hot-wire anemometry
and flow visualization to measure the characteristic
dimensions of the typical eddy in the outer region of a
boundary layer (C, and C,; see insert in Fig 58). His
conclusion is that while large eddies appear to be Reynolds
number independent, the typical eddies do depend on the
Reynolds number.

Figure 58, taken from Bandyopadhyay (1991), shows a
compilation of data from widely different physical as well
as numerical experiments. The emphasis is on Reynolds
number effects on organized small scales in the outer layer.
Equation 37 is used to rescale Bushnell et al's (1975)
compilation of the variation of the maximum mixing length
(£) with Reynolds number, shown by the shaded area in Fig
58. The streamwise and normal characteristic dimensions of
the typical eddy, C, and C,, are obtained from Falco's
(1977) experiments referenced above. This data is
represented respectively by the broken and solid lines in Fig
58. Data for the Taylor's streamwise and normal micro-
scales, A, and ky, are compiled by Falco (1974) and
indicated here by the slanted dashes. Finally, the range of
variation of the diameter, d, of the characteristic hairpin
near the edge of the boundary layer is computed from
Spalart's direct numerical simulations by Robinson (1990).
This is indicated in Fig 58 at a single Reynolds number by
the open circle and the error bar. The large variability of
the vortex diameter in the simulations is intriguing. All
scales are normalized with the appropriate boundary layer
thickness, . At Rey > 10x103, the characteristic size of all

the organized small structures appear to asymptote to the

value of the maximum mixing length;
kA/Sz)»}/SzCA/Bsz/Sz(C /) (38)

In the same range of Reynolds numbers, the above scales
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Fig 55. Two-dimensional spectra P (k; Jof ) for Re,, = 10,000;
¥t = 1.56 (from Morrison ef al, 1971).
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are probably also equal to A/6 and C/6. This does not
necessarily imply an approach to isotropy, but rather that
x-y and x-z sections of the same hairpin vortex are being
observed.

Smits et al (1989) and Smits (1990) have compared a
supersonic (Re; = 80x10%) and a subsonic (Re, = 5x10°)
turbulent boundary layer, which comparison primarily
reflects the effect of Rey and not M . In the high-Reynolds
number flow, for y/& > 0.25, the peak value of the shear
correlation coefficient R, is lower than the corresponding
value in the low-Reynolds number flow, for example by
40% at yB > 0.65 (see Fig 53). Comparison of the
probability density function shows that for /8 > 0.25, the
vertical component of the Reynolds-stress-contributing
motion is weaker in the Re, high case.

If the Reynolds-stress-production module is qualitatively
unchanged, the drop in the coefficient R, , referred
henceforth to the peak value, represents a disproportionate
increase in the denominator. A large drop in the value of
R,, could happen if the turbulence becomes partially
stochastic whereby # and v are decorrelated while the
kinetic energy production continues to contribute to the rms
values of ¥ and v. But since such a situation will come
largely due to high-frequency components which do not
have much energy, the decreased R, must come from an
increased contribution from the large scales which are
energetic but are unable to produce turbulence. The growth,
at higher Reynolds numbers, of an approximately flow-
aligned, large-scale swirling motion in the cross-stream
plane in the outer part of the boundary layer satisfies this
requirement. Long time two-dimensionality requires that
swirls of both signs be produced. The development of the
swirl suggests an increase in the v- and w-turbulence. Since
the outer layer wu-turbulence intensity in supersonic
boundary layers still scales with y/5 exactly as at low Re,
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Fig 56. Two-dimensional spectra P(k; , ® + ) for Re,, = 100,000;
y* =13.9 (from Morrison et al, 1971)."
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(Smits 1990), the lower R, is attributable to increased v-
turbulence only. Accordingly, in the cross-stream plane, the
v- and w- motions must be correlated over distances O[8] at
high Reynolds numbers. With increasing Reynolds num-
bers, the 'vortex-vortex interactions in intra- and inter-
hairpin vortices could lead to the formation of such new
scales described as double helix and tornadoes, respec-
tively, in Bandyopadhyay (1989).

The sequence of photographs in Fig 59 shows that
double-helix spiraling of a hairpin vortex in a turbulent
boundary layer can indeed take place. The smoke-filled
flow is illuminated with a sheet of laser inclined upstream
at 45° to the flow direction, and the Reynolds number is
approximately Re, = 600. At this low Reynolds number, a
typical vortex loop has a relatively low aspect ratio and
vortex stretching is not pronounced. Nevertheless, the
photographs in Fig 59 adequately illustrate the pheno-
menon. Increased vortex stretching and vortex-vortex
interaction could cause a hairpin vortex to first spiral
around itself into a double helix and then onto further
spiraling between neighboring double helixes. The process
contributes to crinkling and increase in surface area of the
vorticity layer. The hierarchies of spiraling leading to many
miniature tornadoes continues as long as they contribute to
enstrophy amplification. These special behaviors become
more pronounced as the Reynolds number is increased. As
the double helix crosses the static light plane, the cross-
section moves wall-wards and the direction of the inner
induced-flow rotates. In this example, the maximum vortex
diameter happens to be the same as the maximum mixing
length and it decreases in size both as y— 0 and y— 3.

7.3.4 Inner structures

In this subsection, Reynolds number effects on the inner
structures are discussed. It will be argued that vortex
stretching is enhanced at higher Reynolds numbers, and that
the low-speed streaks, commonly observed in low-Reynolds
number experiments, might become less important at higher
speeds.

Wei and Willmarth (1989) have argued that in turbulent
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Fig 57. Reynolds number dependence of ratio of outer to inner scale. The
straight line is computed from modified pipe resistence formula and power-
law mean-velocity profile. Data compiled by Bandyopadhyay (1991) from
different experiments. k
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channel flow literature where an inner-layer scaling has
been claimed to hold errors have crept into measurements
which are ascribable to large invasive probes, and that
sometimes small but systematic variations with Reynolds
number have been overlooked because such a scaling was
assumed a priori, Their measurements, described previous-
ly in Section 6 of the present article, show that
u,., /U, turbulence intensity scales on inner variables only
up to y* = 10 which is well inside the inner region. The
v, /U, turbulence intensity and the Reynolds shear stress

- uv/U’distributions do not scale on inner variables

anywhere in the channel. Inferestingly, the maximum
normalized Reynolds stress and normal turbulence intensity
increase with Reynolds number, This they attributed to the
enhancement of the vortex-stretching mechanism in the
inner region with increasing Reynolds number.

Since the Reynolds number Re, or Re, is a dimension-
less grouping of outer variables, failure of the turbulence
quantities in the inner region to scale only on inner vari-
ables is an indication that the dynamics of the inner region
structure are affected by outer as well as inner variables.
Wei and Willmarth argue that these Reynolds-number de-
pendencies are caused by changes in the coherent structure
of the turbulence close to the wall, and that the turbulent
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Fig 58. Reynolds number variation of maximum mixing length, typical
eddy and Taylor’s micro-scale lengths. The single data point in the figure
indicates range of haimpin diameters detected at edge of directly simulated
boundary layer. The curves are fairings of experimental results. Data
compiled by Bandyopadhyay (1991).
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flow structure at high Reynolds number near solid bounda-
ries, ie the hairpin vortex structure and interactions, will
differ significantly from lower-Reynolds number inner
structures.

Fig 59. Smoke-filled turbulent boundary layer illuminated using a laser
sheet inclined upstream at 45° to flow direction. Arrows in sequence of four
photographs show double-helix spiraling of a hairpin vortex (from
Bandyopadhyay, 1989).
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Morrison et al (1971) have studied the organized motion
in the sublayer region of a pipe flow. As discussed in
Section 7.3.2, they have measured the two-dimensional fre-
quency-wavenumber spectra of the longitudinal velocity
fluctuations at 10.6x10° < Re, < 96.5x10°. An appeal of this
data lies in its long-time averaged statistical nature and the
absence of any troublesome subjective threshold setting as
used in VITA or VISA techniques. For Re, < 30x103, the

streamwise phase velocity ¢} in the sublayer is independent
of wavenumber and remains a constant throughout the
sublayer. Since this constant velocity co-ordinates the phase
of the periodic motions at different wall-normal locations,
Morrison et al concluded that the sublayer turbulence is
wave-like and in fact at low Reynolds numbers it is likely
that the sublayer consists of relatively periodic waves.

The critical-layer height is estimated to be 9v/U,_ because

at that location the average fluid velocity equals ¢, = 8. At
Re, < Re, = 30x103, the characteristic spanwise wavelength

A% of 135 agrees with Kline et al’s (1967) streak-spacing
estimate of 130. However, for Re, > Re,, the frequency-
wavenumber spectra for the laterally spaced points loose
their universal shape and the relative amount of low-

frequency, low-wavenumber (kj) energy increases with

Reynolds numbers (see Figs 55 and 56). This additional
energy which becomes significant at higher Reynolds
numbers results from disturbances which convect at
velocities much greater (the average being 16U) than the

characteristic sublayer velocity of 8U,. This led Morrison et

al (1971) to conclude that at higher Reynolds numbers, the
character of the sublayer will be substantially altered, with
an increasing amount of low-frequency, low-wavenumber
energy being introduced. The disturbances responsible for
this additional energy have propagation velocities much
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Fig 60. Reynolds number effects on viscous drag reduction due to OLD for
2500 < Reg < 18,000 (from Anders, 1990a).
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larger than that which characterizes the sublayer at low
Reynolds numbers. The “streaky” structure which has been
assumed to be characteristic of the sublayer will become
less important as the Reynolds number is increased and it is
probable that the “streaks” may not be apparent at all at
sufficiently large values.

By trial and error, Walsh (1990) has optimized the di-
mensions of drag reducing V-groove riblets (A" = s* = 12,
where h and s are the riblet height and spanwise spacing,
respectively) at low Reynolds numbers (Re, < 6x10%). The

value of s* does not scale with the spanwise mean-streak-

spacing A" (= 100). The findings of Walsh ef af (1989) and

Walsh (1990) that the riblet performance does not change at
transonic speeds and high Reynolds numbers (M, = 0.7;

20x10% < Re, < 50x10%) does not, therefore, invalidate

Motrison et al’s (1971) conclusion that the low-speed
streaks will gradually become unimportant at high Reynolds
numbers.

Grass (1971) investigated the nature of inner/outer
interaction in smooth as well as rough wall-bounded flows.
He maintains that the essential features of this interaction
do not change despite the presence of three-dimensional
roughness elements that protrude as much as 80 wall units
into the inner layer, well outside the viscous region. Since
low-speed streaks are not observed on walls with three-
dimensional roughness, Grass’ results minimize the
importance of the streaks in the maintenance of turbulence.

A related issue is the importance of the intense but rare
bursting events at high Reynolds numbers. A partial answer
is given by Kailasnath (1993) who used a statistical
approach to obtain useful information on the structure of the
instantaneous momentum flux, thus sidestepping analysis
conditioned on specific episodes and focusing instead on
the contribution to the momentum flux associated with
various magnitudes of velocity fluctuations. Kailasnath's
non-episodic approach reveals that the contribution to the
flux is dominated by medium amplitude velocity
fluctuations in the range of +1.54', which are-not rare
events, This implies a diminishing importance of the rare,
intense events taking place in a progressively shrinking
near-wall region as the Reynolds number increases. -

8. FLOW CONTROL

8.1 Introductory remarks

The ability to actively or passively manipulate a flow field
to effect a desired change is of immense technological
importance. The term boundary layer control includes any
mechanism or process through which the boundary layer of
a fluid flow is made to behave differently than it normally
would were the flow developing naturally along a smooth
flat surface. The topic has been reviewed by, among others,
Bushnell (1983), Bandyopadhyay (1986b), Wilkinson et a/
(1988), Bushnell and McGinley (1989), Gad-el-Hak (1989;
1990; 1993), Bushnell and Hefner (1990), Fiedler and
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Fernholz (1990), and Gad-el-Hak and Bushnell (1991). A
boundary layer could be manipulated to achieve transition
delay, separation postponement, lift enhancement, drag
reduction, turbulence augmentation, or noise suppression.
These objectives are not necessarily mutually exclusive. For
example, by maintaining as much of a boundary layer in the
laminar state as possible, the skin-friction drag and the
flow-generated noise are reduced. However, a turbulent
boundary layer is in general more resistant to separation
than a laminar one. By preventing separation, lift is
enhanced and the form drag is reduced. An ideal method of
control that is simple, inexpensive to build and operate, and
does not have any trade-off does not exist, and the skilled
engineer has to make continuous compromises to achieve a
particular goal.

Of all the various types of shear flow control now extant,
control of flow separation is probably the oldest and most
economically important. The tremendous increases in the
capability of computational fluid dynamics, which have
occurred as a direct result of increases in computer storage
capacity and speed, are transforming flow separation
control from an empirical art to a predictive science.
Control techniques such as mitigation of imposed pressure
gradients, blowing and suction are all readily parameterized
via viscous CFD. Current inaccuracies in turbulence
modeling can severely degrade CFD predictions once
separation has occurred, however the essence of flow
separation control is the calculation of attached flows,
estimation of separation location, and indeed whether or not
separation will occur, tasks which CFD can in fact perform
reasonably well within the uncertainties of the transition
location estimation.

Techniques to reduce the pressure drag are more well
established than turbulent skin-friction reduction tech-
niques. Streamlining and other methods to postpone
separation can eliminate most of the pressure drag. The
wave and induced drag contributions to the pressure drag
can also be reduced by geometric design.

The skin friction constitutes about 50%, 90%, and 100%
of the total "drag on commercial aircraft, underwater
vehicles and pipelines, respectively. Most of the current
research effort concerns reduction of skin-friction drag for
turbulent boundary layers. For that purpose, three flow
regimes are identified. First, for Re, < 106, the flow is
laminar and skin friction may be lowered by reducing the
near-wall momentum. Adverse pressure gradient, blowing
and surface heating/cooling could lower the skin friction,
but increase the risk of transition and separation. Secondly,
for 106 < Re, < 4x107, active and passive methods to delay
transition could be used, thus avoiding the much higher
turbulent flow drag. Thirdly, at the Reynolds number
encountered after the first few meters of a fuselage or a
submarine, methods to reduce the large skin friction
associated with turbulent flows are sought, These methods
are classified in the following categories: Reduction of
near-wall momentum; introduction of foreign substance;
geometrical modification; relaminarization; and synergism.
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The second category above leads to the most impressive
results. Introduction of small concentration of polymers,
surfactants, particles or fibers into a turbulent boundary
layer leads to a reduction in the skin-friction coefficient of
as much as 80%. Recently introduced techniques mostly fall
under the third category above and seem to offer more
modest net drag reduction. These methods are, however,
still in the research stage and include riblets (~8%), large
eddy breakup devices (or outer-layer devices, OLD)
(~20%), and convex surfaces (~20%).

The knowledge of the Reynolds number effects is useful
to flow control, This is because experimental investigations
at low Reynolds numbers, ie lower speeds and/or smaller
length scales, are less expensive. Most flow control devices
are, therefore, developed and tested at rather low Reynolds
numbers, say Re, = 1000. Extrapolation to field conditions
is not always straightforward though, and it often comes to
grief. While the riblets results seem to extrapolate favorably
to field conditions, the verdict on OLD is disappointing.
These points will be discussed in Sections 8.2 and 8.3.

8.2 Riblets

Properly optimized, longitudinally grooved surfaces, called
riblets, could lead to a modest skin-friction drag reduction,
in the range of 5-10%, in turbulent boundary layers. The
subject dates back to the mid 1960s but has attracted much
attention during the 1970s and 1980s. Walsh (1990)
provides a recent up-to-date review. The exact mechanism
through which riblets achieve net drag reduction despite the
substantial increase in wetted surface area is still
controversial. For the present purpose, however, the issue of
Reynolds number effects on riblets performance is more
pertinent. Flight tests and transonic tunnel experiments all
indicate that the inner variables are the proper scaling for
the dimensions of the riblets, as discussed in Section 7.3.4.

Choi’s (1989) spectrum measurements show that the
energy of skin-friction fluctuations in the riblet groove
drops by a decade compared to that of the smooth surface
over more than a decade of the flow frequency range.
Typically, over time expressed in wall units of ¢* = 170,
the skin friction in the groove can remain below average
and at a quiescent state as if the fluid in the groove is
partially relaminarized. The dye flow visualization of
Gallagher and Thomas (1984) also shows that the tracer
remained quiescent and viscous-pool like between the ribs
and it leaves the groove only when a burst passes overhead.
Like Gallagher and Thomas, Narasimha and Liepmann
(1988) have also suggested that the riblets create pools of
slow viscous flow in the valleys, and thereby modify the
interaction of the wall flow with the outer flow. Black
(1968) has analytically described the dynamics of the mean-
velocity profile of a canonical turbulent boundary layer in
terms of a periodic competition between the wall and outer
layers whereby the thickness of the sublayer changes with
phase. The maximum thickness of the sublayer that the
outer layer will allow can be obtained from the
extrapolation of the log law to the sublayer profile.
Consider the equality:
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Ur=y*=2.411In(y*") + 5.4 39

This is given by y* = 11, which is nearly the same as the
optimized riblet height.

In a recent paper, Choi ef al (1993) used direct numerical
simulations to study the turbulent flow over a riblet-
mounted surface. Quadrant analysis indicates that drag-
reducing riblets mitigate the positive Reynolds-shear-stress-
producing events. Choi er al suggest that riblets with
sufficiently small spacing reduce viscous drag by restricting
the location of the streamwise- vortices-above the wetted
surface such that only a limited area of the riblets is
exposed to the downwash of high-speed fluid induced by
these vortices (see also the corroborating numerical results
of Kravchenko et al, 1993).

Once it is accepted that the riblet performance is
unrelated to streaks, it comes as no surprise that sand-grain
roughness also has a drag-reducing behavior exactly like
riblets. Tani (1987; 1988) has reanalyzed Nikuradse’s
(1933) experimental data on sand-grain roughness and has
shown that its performance also changes from drag reducing
to drag increasing with increasing #*, where A is the
characteristic roughness height. The skin friction remains
lower than that of the smooth wall for A" < 6. Compared to
the optimized riblets, the drag reduction is lower in
magnitude, but is still of the same order. Tani has also
suggested that the mechanism of drag reduction is likely to
originate in the nearly quiescent regions of the flow within
the interstices of the roughness elements, as observable
deep within riblets.

Grass (1971) has shown in a channel flow that the inrush
and outrush phases of the production cycle are also present
when the wall has a three-dimensional roughness. Note,
however, that walls with three-dimensional roughness
elements do not have smooth, wave-like low-speed streaks,
and although the outer-layer structure is similar to that in a
smooth wall, the near-wall stress flux has a different
behavior (Bandyopadhyay and Watson, 1988).

8.3 Recovery response

There are at least two modes of interaction between the
inner and outer regions of a boundary layer. In the first, the
outer structures obtain at least part of their energy by
convection and turbulent transport from the inner region of
the upstream part of the boundary layer. This view is
supported by the near-constancy of the ratio between
turbulence stress and twice the turbulence kinetic energy,

—E/;—Z—. across a major portion of the boundary layer.

This is true even in the wake region, ie, /0 = 0.2, where
both the Reynolds stress and the rms velocity fluctuations
are rapidly decreasing. According to Townsend (1976), the
turbulent fluid in that region has been sheared sufficiently
long to attain its equilibrium structure. The second mode of
inner/outer interaction involves the pressure effects of the
inactive motion. Compared to the convective mode, the
pressure mode is much less extended in the streamwise
direction. In other words, the first mode points towards long
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memory while the second is associated with short memory.
This may be relevant to the performance of different control
devices as discussed in the following two subsections.

8.3.1 Disturbances in outer layer

The long memory associated with the outer structure
dependence on upstream conditions contrasts the short
memory of the inner region. This was demonstrated by
Clauser (1956) who has shown that in a turbulent boundary
layer at a given Reynolds number, disturbances survive
much longer in the outer layer (y/8 > 0.2) than in the inner
layer. He demonstrated this by placing a circular rod in the
outer and inner regions of a fully-developed wall layer, For
the rod placed at /8 = 0.16, the decay of the maximum
deviation of the distorted mean-velocity profile from the
equilibrium value was reduced to half of its initial value at
a downstream distance of 28. In contrast, the outer-layer rod
at y/8 = 0.6 caused a distortion in the velocity profile that
lasted four times longer, 85, and that did not completely
disappear even at 168 downstream of the rod (see Fig 13 of
Clauser's article), Note that Clauser (1956) compared the
response of the inner and outer layers at a low Reynolds
number and did not consider any Reynolds number effect.
Incidentally, some consider Clauser's demonstration as the
predecessor of the modern day drag-reduction experiments
employing modifications to the outer layer (Bushnell and
Hefner, 1990).

In viscous drag reduction techniques where a device drag
penalty is involved, as with outer-layer devices (OLD), a
recovery length ~1003 is desirable to achieve a net gain, To
date, drag reduction has been achieved only at low
Reynolds numbers, Re, < 6x10° (Anders, 1990a). However,
when Anders examined his outer-layer devices at higher
Reynolds numbers, to his surprise, the drag reduction
performance was reduced and the device was no longer a
viable candidate for viscous drag reduction. Anders'
measurements in the range of Reynolds numbers of 2500 <
Re, < 18,000 are depicted in Fig 60. The experiments were
conducted by towing a slender, axisymmetric body .in a
water channel. The outer-layer device used in Fig 60a
consists of two NACA-0009 airfoil-section rings placed in
tandem 1.5 m downstream of the nose of the 3.7-meter-long
body. The second device used in Fig 60b consists of two
Clark Y low-Reynolds number airfoil-section rings, again
placed in tandem. Both devices were optimized to yield
lowest skin friction downstream, The figure depicts the
downstream trends of the local skin friction, normalized
with the skin friction at the same location but without the
OLD.

Although both devices used by Anders (1990a)
consistently lead to lower skin friction at all Reynolds
numbers tested, net drag will, of course, be increased by the
device drag penalty. This penalty depends on, among other
factors, the thickness and angle of attack of the device,
whether the boundary layer on the device itself is laminar,
transitional or turbulent, and the presence and extent of any
separation bubble that might form on the outer-layer
ribbon/airfoil. Anders (1990a) reports a very modest net
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drag reduction for his airfoil devices of around 2% at the
lowest Reynolds number but a net drag increase of 1-5% at
higher Reynolds numbers.

Bandyopadhyay (1986a) used a large-area drag balance
to investigate systematically the Reynolds number effects
on both single- and tandem-ribbon devices. His Reynolds
number range of 1300 < Re, < 3600 (5x10° < Re; <
1.8x109) is lower than that of Anders” (1990a) but the loss-
of-performance trends are the same as shown in Fig 61. In
here, the net drag reduction as a percentage of the reference
drag is plotted as a function of Reynolds number, Re,,
based on the freestream speed and the total length of the flat
plate. Note that the drag penalty for the thin-ribbon devices
used by Bandyopadhyay should be far smaller than that for
the airfoil devices used by Anders. We conclude that for
both low Re, (< 6x10%) and high Re, (> 6x10%), the
effectiveness of OLD diminishes with the increase of
Reynolds number,

The continued drop in the skin-friction reduction with
Reynolds number comes as a surprise because the mean
flow analysis of Coles (1962) indicates an asymptotic state
of the outer layer to have been reached above Rey > 6x10°.
The slow drop in AU* does not start until Rey > 15,000 (see
Figs 13 and 14). Anders (1990a) attributed the irrepro-
ducibility of the low-Reynolds number behavior at higher
values to a significant change in the turbulence structure at
higher Re, as discussed by Head and Bandyopadhyay
(1981). The structural changes as the Reynolds number
increases provide a simple explanation for the performance
deterioration of outer-layer devices. Thése devices
presumably work by selectively suppressing the normal
velocity fluctuations and thus decorrelating the stteamwise
and normal velocities. As discussed in Section 7, at high
Reynolds numbers, fewer hairpin vortices reach the edge of
the boundary layer because of increased interactions among
these vortices. The overturning motion of the large eddies
observed at low Reynolds numbers is less at higher
Reynolds numbers, which reduces the v-turbulence
suppression role for the OLD,

8.3.2 Disturbances close to wall

It is clear from the preceding subsection that knowledge of
Reynolds number effects on the mean turbulent flow alone

0r- A Single Ribbon Device
O Tandem Ribbon Device
Sk
DR(%)
10 |-
15+
0 0.5x 108 1.0x 108 1.5x108 2.0x108
Rep,

Fig 61. Large-area drag balance measurements showing Reynolds number
effects on viscous drag reduction due to outer layer devices for 1300 < Re,

< 3600 (from Bandyopadhyay, 1986a).
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does not allow one to address all practical problems. This
can be further demonstrated in the post-transition
unexpected result alluded to in Section 2.3. Klebanoff and
Diehl (1952) have made measurements on artificially
thickened boundary layers at zero pressure gradient. The
first 60 cm of their splitter plate was covered with No. 16
floor sanding paper. The measurements were carried out
over a length of 320 cm at freestream velocities of 11, 17
and 33 m/s, giving three ranges of Reynolds numbers and
producing a maximum Re, of 14.850. The Reynolds
number Re, at the end of the sand roughness (at x = 60 cm)
was 2640, 4050, and 7990 at the three above mentioned
speeds, respectively. Figure 62 shows the recovery response
of the turbulent boundary layer to the same wall disturbance
(meaning the same sand roughness) at the three different
reference Reynolds numbers (that is freestream speeds).
One normally expects the recovery from wall disturbances
to be the quickest (in x ) at the highest Reynolds numbers,
Therefore, it comes as a surprise that, in contrary, the return
to the apparent “equilibrium” state (given by the broken
line in Fig 62) is clearly slowed down as the reference
Reynolds number is increased and not decreased! Note that
at U, = 33 m/s, 6 = 2.54 cm at x = 60 cm, that is
immediately after the sand roughness. Figure 62 shows that
even at the last station where x = 320 cm and Ax/8 = 100,
the recovery is not yet complete. The recovery length in
the figure for an incoming Re, of about 8x10° for the near-
wall disturbance case is similar to the outer-layer
disturbance case shown in Fig 60 at a similar Reynolds
number. This puzzling behavior leads to the question: why
are the near-wall transition-trip disturbances surviving
even beyond an x/5 of 100 at such high Reynolds numbers
as 15x103 much like it is known for outer-layer devices at
much lower Reynolds numbers? This question is clearly
important to model testing in wind tunnels and code
validation data, where roughness is used to trip and thicken
the boundary layer to simulate high Reynolds numbers or
flight conditions (Bushnell et al, 1993).

8.4 Control of high-Reynolds number flows

The above discussion indicates that post-transition memory
is longer at higher Reynolds numbers for certain trips.
Wall-layer control may, therefore, have a long-lasting
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Fig 62. Approach to equilibrium after tripping device at moderately high
Reynolds numbers (from Coles, 1962).
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effect, say O[1008], if applied during transition. On the
other hand, as per Clauser (1956), if the wall control is
applied in the fully-developed turbulent region of the flow,
the effect does not last long. The relevance of Reynolds
number effects to flow control is particularly telling in case
of full numerical simulation because it is currently limited
to Reynolds numbers that are not that far from transitional
values. 7

It is instructive to recall in here typical Reynolds
numbers encountered in the laboratory and in the field.
Other than a handful of large-scale facilities (see Section
5.4), boundary layers generated in wind tunnels and water
tunnels typically have Reynolds numbers of Rey = O[1000].
A commercial aircraft traveling at a speed of 300 m/s at an
altitude of 10 km would have a unit Reynolds number of
107/m. Due to the much smaller kinematic viscosity of
water, a nuclear submarine moving at a modest speed of 10
m/s (~ 20 knots) would have the same unit Reynolds
number of 107/m. This unit Reynolds number translates to a
momentum thickness Reynolds number near the end of
either vehicle of roughly Re, = 300,000. The Reynolds
number on the space shuttle is as high as Rey = 430,000, on
an aircraft carrier can have a maximum of Rey = 1.5x10°,
and in the atmospheric boundary layer is typically Re, =
106-107. These ranges of Reynolds numbers together with
the scopes of operation of typical wind and water tunnels,
direct numerical simulations and three large-scale facilities,
the National Transonic Tunnel, NASA-Langley towing tank
and the super-pipe, are schematically shown in Fig 1.

It is clear from the discussion thus far in this section and
from the strong Reynolds number effects on the mean flow,
higher-order statistics and coherent structures demonstrated
in Sections 5-7, that control devices developed and tested in
the laboratory can not in general be readily extrapolated to
field conditions. Detailed knowledge of high-Reynolds
number consequences is required prior to attempting to
control practical wall-bounded flows.

9, NUMERICAL SIMULATIONS

9.1 General remarks

The principles of conservation of mass, momentum and
energy govern all fluid motions. In general, a set of partial,
nonlinear differential equations expresses these principles
and together with appropriate boundary and initial
conditions constitute a well-posed problem. For a turbulent
flow, the dependent variables are random functions of space
and time, and no straightforward method exists for
analytically obtaining stochastic solutions to nonlinear
differential equations. Hence, the increased reliance on
large-memory, high-speed digital computers to integrate the
equations of motion. Large number of  articles that
specifically review turbulence computations are available
(eg, Launder and Spalding, 1974; Reynolds, 1976; Lumley,
1978; 1983; Rogallo and Moin, 1984; Speziale, 1991).
Understanding and modeling of turbulence via numerical

Downloaded From: http://appliedmechanicsr eviews.asmedigitalcollection.asme.or g/ on 09/20/2017 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use



354 Gad-el-Hak and Bandyopadhyay: Wall-bounded turbulent flows

simulations can solve a variety of engineering problems and
lead to important technological advances.

A distinguishable characteristic of high-Reynolds num-
ber turbulent flows is their large range of excited space and
time scales. In homogeneous turbulence, for example, the

energy-containing eddies are O[Ref/ 4] times larger than

the length scale of the smallest eddies (Kolmogorov length-
scale), where Re, = u'L/v is the turbulence Reynolds number

(see, for example, Landau and Lifshitz, 1987), In order to
resolve the flow adequately, a computer storage (at each

9/4

time step) of O[Re ; ] and a total number of arithmetic

operations of at least Re? are needed.

Direct numerical simulations (DNS) attempt to integrate
the instantaneous equations and resolve all scales for which
there is an appreciable kinetic energy, but are limited to
simple geometries and Reynolds numbers well below the
values encountered in most practical situations. The reason
being the enormous computer capacity needed to resolve
the necessarily time-dependent, three-dimensional velocity
and pressure fields (as well as density and temperature
fields if the flow is compressible), As indicated above the
number of active degrees of freedom in an incompressible

turbulent flow is on the order of Re;’*

Reynolds number of 108, modest by geophysical standards,
there are on the order of 10'# active degrees of freedom per
L3, where L is the characteristic length of the flow (Frisch
and Orszag, 1990). This colossal number challenges the
capabilities of both algorithms and fastest supercomputers
available now or in the foreseeable future.

Even if it can be carried out, the brute-force numerical
integration of the equations of motion using the
supercomputer is prohibitively expensive even at modest
Reynolds numbers. For example, a single direct numerical
simulation of a canonical wall-bounded flow at Re, =
O[1000] requires about 1000 CPU hours and costs, at
commercial supercomputer rates, close to $1 million. This
requirement increases roughly by an order of magnitude if
the Reynolds number is doubled. :

For now and the foreseeable future, a statistical
approach, where a temporal, spatial or ensemble mean is
defined and the equations of motion are written for the
various moments of the fluctuations about this mean, is the
only route available to get meaningful engineering results.
Unfortunately, the nonlinearity of the Navier-Stokes equa-
tions guarantees that the process of averaging to obtain
moments results in an open system of equations, where the
number of unknowns is always greater than the number of
equations, and more or less heuristic modeling is used to
close the equations. Such modeling can take a variety of
forms and levels of sophistication, including the simple
one-point first and second moments, the two-point closures
or spectral models, the subgrid-scale models for large-eddy

per unit volume. At
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simulations, and models based on the joint probability
density function,

In the simplest kind of turbulence modeling, the
Reynolds stress is related to the mean-velocity gradient via
a suitably assumed eddy viscosity, which may depend on
position. Calculations of one-point first and second
moments, such as mean velocity, mean pressure and
turbulence kinetic energy, are then possible, Although
gradient-transport models produce reasonable results in
very few simple cases, they are in principle faulty (see, for
example, Corrsin, 1974). Lumley (1992) summarizes the
potential pitfalls in using first-order closure schemes. These
are basically local models which, on introducing the
Prandtl's (1925) concept of mixing length, make direct
analogy between turbulent transport processes and
molecular ones, an ill-fated assumption considering the lack
of a clear-cut separation of scales in the former kind of
transport,

A turbulent flow is by necessity nonlocal in nature.
Conditions at a point depend on the history of all fluid
particles that arrive at that point. This is due to the
hyperbolicity of the Navier-Stokes equations (Bradshaw et
al, 1967). Ideally, therefore, a turbulence model should be
nonlocal depending on the weighted integral, with fading
memory and progressively broadening domain of
integration, back over the mean path through the point in
question. Second-order closure models essentially do that
for second-order quantities, but the approximations used
there for third-order quantities are again local, and so on.
The structural models also satisfy this non-local requirment
well.

Second-order models attempt to close the Reynolds-
stress transport equations. Since these models are based on
the two-point velocity correlation tensor, they provide more
detailed information about the turbulence structure. The
original idea for second-order closure schemes is due to
Rotta (1951), but the massive computational requirement
for solving six additional transport equations delayed its
practical implementation for over two decades.

An alternative approach to conventional closure schemes
utilizes the renormalization group (RNG) theory. The
dynamic RNG method, first developed for use in the
quantum field theory, together with a correspondence
principle have been formalized for the turbulence problem
by Yakhot and Orszag (1986). The method uses dynamic
scaling and invariance together with iterated perturbation
techniques to evaluate the transport coefficients and
transport equations for the large-scale modes. RNG
computations have been shown to produce better
comparisons with experiments for complex situations where
conventional closure methods often fail; for example, for
separated flows, swirling flows, etc. A major advantage of
the RNG analysis is its independence of any experimentally
adjustable parameters.

Perhaps the next best computational strategy to direct
numerical simulations is large-eddy simulations (LES),
where the energy-containing eddies are directly computed
but the more universal small scales are modeled. LES uses
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a fixed spatial resolution and the effects of eddies not
resolved are modeled using gradient transport ideas
(Galperin and Orszag, 1993) or the more sophisticated
dynamic localization models. The two approaches are
contrasted below,

Inertial transfer of energy over a wide range of spatial
scales is a distinguishing characteristic of turbulent flows
and one which strongly influences their evolution. This
energy transfer originates from the nonlinear convective
derivative term in the Navier-Stokes equation and gives rise
to the familiar closure problem. The use of large-eddy
simulation as a tool to explore the physics of complex
turbulent flows is limited by current subgrid-scale (SGS)
models (Rogallo and Moin, 1984). Implicit in each SGS
model currently in use are fairly simplistic assumptions
regarding the nature of inertial energy transfer over the
subgrid wavenumber range. For example, the simple
Smagorinsky (1963) model lumps the effect of the subgrid
eddies into an effective subgrid viscosity in the Heisenburg
sense. The effect of shear at subgrid scales is neglected and
the validity of the Smagorinsky model has been questioned
by Kim et al (1987). Such a model encounters particular
difficulty when applied to complex nonequilibrium flows
with extra strain rates. In the more recent dynamic SGS
model (Germano et al, 1991), the eddy viscosity concept is
retained but a space-time dependent Smagorinsky constant
is computed which allows the constant to adjust to the local
flow dynamics. A disadvantage of dynamic localization
SGS models with regard to their application in wall-
bounded turbulent flows lies in the failure to include effects
associated with the anisotropy of small scales, The models
can also predict energy backscatter which is too large and
consequently gives rise to negative eddy viscosity values.

9.2 Direct numerical simulations

Notwithstanding the colossal computer requirement, it is
clear that integrating the instantaneous equations of motion
is physically more sound than the heuristic closure required
for any of the alternative approaches discussed above. DNS
is not, however, without its detractors. A legitimate
question is what exactly is being simulated? It is not clear

Fig 63. Vortical structures in turbulent boundary layer. Direct numerical
simulation results from Robinson et al (1989).
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that DNS and a corresponding physical experiment at the
same Reynolds number are simulating the same flow, When
the numerical results are compared to experiments, at first
glance many points of agreement become evident. But
some subtle disagreements remain, for example in higher-
order statistics. Admittedly, such quantities are not easy to
measure in the laboratory either, and the observed
differences might be fairly blamed on the experimentalists.
However, notwithstanding that the full Navier-Stokes
equations are being integrated, there are several potential
pitfalls that are unique to DNS. These include-the imposed
periodic boundary conditions, the unnatural way by which a
boundary layer becomes turbulent (it is neither properly
tripped nor evolving through natural transition), and the
sterilized environment in which the calculations progress
(perfectly smooth wall and precisely irrotational,
disturbance-free freestream), None of these conditions is
possible in a physical experiment, and their detailed effects
on the computed flow remain unknown. Two specific
discrepancies between physical and numerical experiments
will be elaborated later in this section.

More to the main topic of the present article is the ability
to extrapolate low-Reynolds number physical or numerical
experiments to practical situations. Reynolds-averaged
Navier-Stokes simulations model all the turbulent fluctua-
tions, and is not limited to low Reynolds numbers. The
problem is to figure out the proper model to use for each
range of Reynolds numbers. DNS, on the other hand, is by
necessity a viable tool only at very modest Reynolds
numbers. Without knowing Reynolds number effects on the
mean and turbulence quantities, DNS results can not be
readily extended to engineering applications.

Now let us return to the subtle discrepancies between
DNS and experiments. In the channel-flow direct numerical
simulations of Moin and Kim (1982), the ratio of rms
spanwise vorticity fluctuations to rms streamwise vorticity
fluctuations computed at the wall is less than half of that
computed from the near-wall velocity measurements of
Kreplin and Eckelmann (1979) or the fluctuating shear
stress right at the wall as measured by Fortuna and Hanratty
(1971) and Sreenivasan and Antonia (1977). It seems that
this discrepancy is a consequence of insufficient resolution
in the viscous sublayer in the numerical simulations,

The second discrepancy concerns vortical structures,
admittedly very difficult to detect experimentally, It has
been shown in this paper that in a turbulent boundary layer,
for Re, < 103, Reynolds number affects the mean flow in
the outer layer and the turbulence even down to y* = 4. In
spite of that, the Direct Numerical Simulation (DNS)
studies of the flat-plate boundary layers (Robinson et a/
1989) give us information on the organized turbulence
structures which would be valuable at higher Reynolds
numbers. In the following, the simulation structure at Rey =
670 is compared with the experimentally observed structure
at 600 < Rey < 17.5x103 (Head and Bandyopadhyay, 1981).

Figure 63 shows the numerically obtained vortical
structures in a volume of several & (Robinson ef al 1989).
The fact that vortex cores .are always -associated with
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regions of low pressure is utilized in here to identify the
vortical structures. This way regions of significant vorticity
are not confused with vortices, a potentially serious
problem when dealing with unsteady viscous flows
(Saffman and Baker, 1979; Robinson ef al, 1989; Robinson,
1991). Compared to flow visualization experiments at Rey =
600 (Head and Bandyopadhyay, 1978), the immediate
impression is that the number of structures per unit wall
area is less and it is not difficult to track a structure all the
way to the wall much like in the transitional layer. This
gives credence to the criticism that what is being simulated
numerically is not a fully-developed turbulent flow but
more like a transitional boundary layer. ‘

A large structure can be defined as an agglomeration of
successively forming hairpin vortices creating a linear
upstream interface. However, Theodorsen (1952) and most
others consider only one horseshoe vortex and not any
agglomerations of them to describe a turbulent boundary
layer. This causes a paucity of scales and restricts the
models in their ability to better describe the turbulent
boundary layer at high Reynolds numbers.

A longitudinal section of Fig 63 contains one or two
structures. In the constant-mixing-length region of the
simulated boundary layer (8" = 280 > y* > 150), d* = 60 +
20 where d is the vortex diameter (Robinson 1990; Bushnell

et al 1975). This gives a small range of 8" / d},,, viz3.5 to

7.0, which means there is a paucity of scales and that the
overturning in the individual structures dominates the entire
boundary layer., The overturning in the boundary layer
diminishes with Re, (Head and Bandyopadhyay, 1981). The

value in the constant-mixing-length layer, viz 4/6* =

0.2173; compares with the mean value of Falco's (1974)
typical-eddy?! length scale C,/8 = 0.31 at this Re, (see Fig

58).

It has been argued elsewhere (Bandyopadhyay, 1989)
that increased vortex stretching and vortex-vortex
interaction could lead the hairpin vortices to first spiral
around itself into a double helix and then onto further
spiraling between neighboring double helixes. Such process
at Rey = 600 was depicted in Fig 59 of the present paper.
Vortex-vortex interactions are not present, however, in the
direct numerical simulations at approximatley the same
Reynolds number ( Rey = 670).

The previously cited high-resolution velocity and
vorticity measurements by Klewicki er al (1994) also
indicate some disagreement with the numerical results of
Spalart (1988). The experimental profile of turbulence
kinetic energy production is consistently lower, pre-
dominately resulting from differences in the Reynolds stress
profiles. Both their turbulent diffusion and viscous diffusion
terms peak closer to the wall than the computational
profiles. In the experiment, the negative peak in the
diffusion profile occurs closer to the wall than the positive

21 Which is the cross-section of the hairpin vortices accofding to Head and
Bandyopadhyay (1981) and Klewicki et al (1994).
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peak in the production profile. In contrast, an opposite

situation is observed in the numerical simulations, where
the diffusion term exhibits its negative peak further from
the wall and crosses zero near the positive peak in the
production profile (Fig 8 of Klewicki er al’ s paper).

10. NON-CANONICAL BOUNDARY LAYERS

Thus far in this article the focus has been on the canonical,
turbulent wall-bounded flow. The incompressible, isother-
mal, zero-pressure-gradient boundary layer developing over
a smooth, rigid, semi-infinite flat plate, or the closely rela-
ted two-dimensional channel flow, is the “simplest” pro-
blem to study analytically, experimentally or numerically.
Practical wall-bounded flows, however, have one or more
complicating influences such as freestream turbulence,
pressure gradient, compressibility, roughness, surface cur-
vature, three-dimensionality, wall compliance, heat transfer,
stratification, change of phase, presence of side-walls and
corners, etc (Bushnell et al, 1993). Such flows are naturally
more difficult to deal with analytically, experimentally or
numerically, but are nevertheless important to study for at
least two reasons. Firstly, their behavior is often quite
different from that of the canonical problem and therefore
must be determined prior to rational design of practical
devices. Secondly, as suggested by Clauser (1956) who in
turn was inspired by Maxwell's concept of black box, the
physical understanding of a canonical turbulent flow (the
black box) could be improved by observing the response of
the flow to different external influences. In other words,
studying a boundary layer over a rough wall, for example,
might shed more light on the smooth-wall flow.

From the point of view of Reynolds number effects on
the non-canonical wall-bounded flows, it is intuitively
appealing to conclude that these effects are at least as
strong as those reviewed in the bulk of the present paper for
the canonical flow. Corroborating data one way or the other
are, unfortunately, not available. The few existing experi-
ments dealing with complex wall-bounded flows were not
specifically designed to search for Reynolds number effects,
In other words, such experiments were carried out at a
particular Reynolds number or at a rather narrow range of
Reynolds numbers. However, if the rms-velocity profiles,
for example, do not scale with inner variables in the
canonical flow, there is little reason to believe that the
corresponding profiles in the non-canonical case would do
so. There is, however, one notable exception to this
argument. Unlike the canonical problem, wall-bounded
flows over rough walls may indeed achieve true Reynolds
number-independence. This trait will be elaborated below.

In the present authors opinion; a complicating influence
which is particularly useful to add to the arsenal of tools
available to better understand the canonical wall-bounded
flow is the non-smooth wall perturbation. Roughness is
simple to implement, at least in physical experiments, and
its effect on the flow is pronounced (see Raupach et al,
1990, for a recent review of rough-wall turbulent boundary
layers). At sufficiently high Reynolds numbers, the skin
friction becomes independent of. viscosity and depends
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solely on the relative roughness scale. In this so-called
fully-rough regime, the constant skin-friction coefficient
contrasts the ever decreasing skin friction for a smooth
wall. This has important consequences on the flow
equilibrium as illustrated below.

According to Clauser (1954), an equilibrium turbulent
boundary layer is characterized by similarity of its velocity-
defect profile in the course of its downstream development.
True equilibrium is achieved when the velocity-defect ratio
becomes a function of (y&) only and, therefore, indepen-
dent of Reynolds number. Tani and Motohashi's (1985a;
1985b) results of analyzing available data seem to negate
the existence of equilibrium state for smooth, zero-pressure-
gradient boundary layers. Tani (1986; 1987), on the other
hand, show that equilibrium is possible for boundary layers
in favorable pressure gradient over smooth as well as k-type
rough surfaces. For a roughness height which increases
linearly with the streamwise direction, equilibrium is
achieved in zero pressure gradient. For d-type roughness,
equilibrium exists for a certain range of pressure gradients,
from favorable to adverse. These useful properties of rough
walls may be exploited to better understand Reynolds
number effects on smooth-wall boundary layers.
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There is at least one more argument in favor of studying
wall-bounded flows over rough walls. As discussed by
Kailasnath (1993), changes in the wall-bounded flow
physics are due to changing the scale ratio, 8* or a*, and
not the Reynolds number per se. While the mean flow is
primarily influenced by Re,, 6" may be the more significant
parameter for the turbulence and the coherent structures.
Such assertion is difficult to prove for the canonical flow
case since a change in Reynolds number leads to a
corresponding change in the scale ratio. However, this is
not the case for fully-rough walls, making them particularly
useful to study. In that case, the scale ratio at a given
Reynolds number could be simply changed by systema-
tically varying the roughness height.

A glimpse of the complexity of Reynolds number effects
in non-canonical turbulent boundary layers can be had by
examining such effects in the presence of freestream
turbulence (Blair, 1983; Hancock and Bradshaw, 1983;
Castro, 1984; Bandyopodhyay, 1992). This is a complica-
ting factor that is particularly important for turbo-
machinery blades where the Reynolds number is low (Re, <
5000) and the freestream turbulence is high. The effect of
freestream turbulence is to increase the skin friction.
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Fig 64. Reynolds number dependence of the fractional increase in skin friction due to freestream turbulence. Variable Reynolds number effects are included
in the damped freestream turbulence parameter fﬁ- Dashed lines indicate a +5% scatter band about the least-square-fit solid line, and the arrows indicate

uncertainties (from Bandyopadhyay, 1992).
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However, as. Hancock (1980) have shown, freestream
turbulence cannot be measured by turbulence intensity
(u'/U) alone, but also jointly with the ratio of the
dissipation length-scale in the freestream and the boundary
layer thickness, (L/5). The freestream turbulence parameter
that combines these two effects is defined as:

il ()]

The simultaneous involvement of the scale ratio greatly
complicates the Reynolds number dependence of the
freestream turbulence effects (Bandyopodhyay, 1992). For
example, due to freestream turbulence in the range of />
0.0115, the wake component AU* increases with Reg, and
in the range of 0.0025 < f'< 0.0095, AU* drops with Re,.
On the other hand, in the two ranges of f < .0025 and
0.0095 < /< 0.0115, there is no apparent dependence on
Re,.

91‘0 account for low-Reynolds number effects, Blair
(1983) empirically arrived at the following damping factor:

B= [1+3 e—(neemzs)]

According to Bandyopodhyay (1992), the fractional in-
crease in skin friction is then a function of only Jo=Sf P
where the exponent n takes the values -1, 1, or 0 depending
on wheter AU* respectively increases, decreases or remains
constant with increasing Re,. Figure 64 is a summary of the
increase in skin friction due to freestream turbulence when
the just mentioned dependence on Rey is taken into account.

(40)

(41)

11. CONCLUDING REMARKS

In the present article, we attempted to assimilate the
considerable volume of experimental and numerical
boundary-layer data that have been accumulated since the
mean flow review of Coles (1962). Attention is drawn to
some aspects of the emerging description of the structure of
high-Reynolds number turbulent boundary layers. Both the
inner- and outer-layer structures are affected by Reynolds
number, The turbulence quantities do not accurately scale
with wall-layer variables in the inner layer. The outer-layer
turbulence structure (S,, peak R, intermittency, u-v
quadrant distributions, streamwise scales) is greatly
changed at extremely high Reynolds numbers (Smits ef al,
1989; Smits, 1990) and new structures probably evolve due
to vortex-vortex interactions. As aptly illustrated by
Kailasnath (1993), the classical similarity theory of wall-
bounded flows that asserts a universal description for the
near-wall flow is found to be increasingly deficient as the
questions become more detailed.

The numerically simulated low-Reynolds number, flat-
plate turbulent boundary layers are characterized by a
paucity of scale and a lack of vortex-vortex interaction.
Studies of the very low-Reynolds number turbulent
boundary layer structure might not inherently involve
several aspects of the high-Reynolds number structure
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which may be crucial to flow control through turbulence
manipulation,

Why does the mean flow scale, at least approximately,
with wall-layer variables in the inner layer yet turbulence
quantities do not? At a relatively low Reynolds number, say
Rey = 500, the inner-layer mean flow appears to be already
universal; so why should not the low-Re, structure be
universal? These questions erroneously imply that there is a -
first-order direct connection between the mean flow and
turbulence in a wall-bounded flow as in a free-shear flow.
In a mixing layer, for example, the experimentally observed
two-dimensional rollers are the direct result of an inviscid
instability of the mean-velocity profile. Their characteristic
dimension is equal to the layer thickness, and they contain
almost all of the mean-flow vorticity, In a wall-bounded
flow, on the other hand, the three-dimensional hairpin
vortices are the result of a secondary or a tertiary instability,
and their diameters are typically much smaller than the
boundary layer thickness. The hairpins contain only a
portion of the mean flow vorticity--that is, they are further
removed from the mean flow.

Experience with turbulence modeling also suggest that
the turbulence in a wall-bounded flow is not derived
directly from the mean flow. In the earliest turbulence
models, shear stress is derived from the mean-velocity
profile. Such models have not been widely successful.
Townsend (1976) and Bradshaw et al (1967) have argued
that instead there is a much closer connection between the
shear stress and the turbulence structure; Townsend’s work
was limited to the near-wall region, while Bradshaw et a/
have extended the argument to the entire shear layer. Direct
measurements of typical eddies have supported their
assertion (Falco, 1974; Newman, 1974).

It should be realized that ensemble averaging is a useful
mathematical tool for computing typical characteristics as
long as the variability in the quantities of interest is
sufficiently low. The large variability in the measurements
of streak spacing (standard deviation ~ 0.3 to 0.4 of mean)
and of voriex diameter even in full simulation at one low
Re, of 670 (maximum diameter about twice minimum one)
is disturbing and this issue has not been addressed yet. It
raises the following questions: (1) Is the turbulence
production mechanism independent of Reynolds number?
(2) Even at one Rey, is there only one mechanism of
turbulence production? (3) Can there be several
mechanisms simultaneously in play each of which has a
different Reynolds number dependence? In the context of
these questions the conclusion arrived at by Keith et al
(1992) for wall-pressure specira that the scaling changes
from mixed to outer layer as Re, is increased, is intriguing.
The answer to question (1) seems no longer an unequivocal
affirmative.

We may summarize our conclusions of the Reynolds
number effects as follows:

1. The widely accepted “asymptotic” state of the wake
component is present only in the range of 6x103 < Re,
< 1.5x10% At higher values, it drops although at a
much slower rate than that in the range of Rey<6x103.
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2,

3.

10.

11,

12.

13.

14.

15.

16.

The Clauser’s shape parameter is strongly Reynolds
number dependent at Reg<103, and weakly above that.
Alternatives to the logarithmic mean-velocity profile
have been periodically proposed. Such heretical ideas
deserve further scrutiny. Independent confirmation
via well-controlled experiments that cover a wide
range of Reynolds numbers, resolve the linear region
and directly measure the wall-shear stress is needed.
The freestream turbulence effect is dependent on
Reynolds number.

Turbulence measurements with probe lengths greater
than the viscous sublayer thickness (~ 5 wall units)
appear to be unreliable, particularly near the wall.
Unlike the mean flow, the statistical turbulence
quantities do not scale accurately with the wall-layer
variables over the entire inner layer. Such scaling
applies over only a very small portion of the inner
layer adjacent to the wall.

At low Reynolds numbers, the peak wu-turbulence
intensity increases slightly with Reynolds number in
both channels and flat plates.

The distance from the wall where the streamwise
turbulence intensity peaks appears to scale with inner
variables.

In contrast, the corresponding distances, expressed in
wall units, for both the normal fluctuations and the
Reynolds stress move away from the wall as the
Reynolds number increases. At high Re, the peak
normal turbulence intensity and the peak Reynolds
stress occur substantially outside the viscous region.
The wall-pressure rms increases slightly with
Reynolds number.

Systematic changes in the mean and higher-order
statistics as the Reynolds number varies could be
considered as proper first-order trends within the
framework of an asymptotic theory. At finite
Reynolds numbers, the additive composite expansion
formed from the inner and outer expansions of any
turbulence quantity provides the only uniformly valid
approximation in the matched region.

In flat plates, trip memory can survive the statistical
turbulence quantities at even Re, > 6x103, where the
mean flow is said to have reached an asymptotic state.
The Reynolds number dependence of the post-
transition relaxation length of both the mean and
turbulence quantities is not well understood.

In pipe flows, the wave nature of the viscous sublayer,
which is observable at low Reynolds numbers, gives
way to a poorly understood random process at high
Reynolds numbers.

While the variously defined (small) length scales
differ greatly from each other at low Reynolds num-
bers, they all asymptote to the mixing length at much
higher Reynolds numbers (Re, > 1.0x104).

The outer-layer structure changes continuously with
Reynolds numbers, and very little is known about the
structure of very high-Reynolds number turbulent
boundary layers.
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17. The aspect ratio of the hairpin vortices increases with
Reynolds number as they also become skinnier, In a
large structure, the number of constituent hairpin
vortices per unit wall area increases with Reynolds
number.

18. Changes in the wall-bounded flow physics could be
described as due to changing the scale ratio, 3* or a*,
and not the Reynolds number per se. In a given
boundary layer, &* changes downstream at a rate
slightly lower than Rey. The influence of the wall
changes from non-local to local as this scale ratio
increases.

19. There is a dire need for high-resolution, reliable

measurements of mean and statistical turbulence

moments at high Reynolds numbers in smooth, flat-
plate turbulent boundary layers.

Reynolds number effects in canonical flows can not

always be extrapolated to non-canonical cases in a

simple straightforward manner,

In closing, the present article is a modest attempt to
investigate critically the effects of Reynolds number on the
mean velocity, higher-order statistics and coherent struc-
tures of the canonical wall-bounded flow. Not surprisingly,
our work has provided more questions than answers, It is
clear that the present knowledge of Reynolds number
effects is basically phenomenological and a good theore-
tical understanding is largely lacking. Real progress in the
field and resolution of its many existing controversies can
only be achieved, however, when well-controlled, well-
resolved physical and numerical experiments are combined
with at least a semblance of analytical foundation,

20.
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