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This paper reviews the state of the art of Reynolds number effects in wall-bounded shear-flow turbulence, 
with particular emphasis on the canonical zero-pressure-gradient boundary layer and two-dimensional 
channel flow problems. The Reynolds numbers encountered in many practical situations are typically orders 
of magnitude higher than those studied computationally or even experimentally. High-Reynolds number 
research facilities are expensive to build and operate and the few existing are heavily scheduled with mostly 
developmental work. For wind tunnels, additional complications due to compressibility effects are 
introduced at high speeds. Full computational simulation of high-Reynolds number flows is beyond the 
reach of current capabilities. Understanding of turbulence and modeling will continue to play vital roles in 
the computation of high-Reynolds number practical flows using the Reynolds-averaged Navier-Stokes 
equations. Since the existing knowledge base, accumulated mostly through physical as well as numerical 
experiments, is skewed towards the low Reynolds numbers, the key question in such high-Reynolds number 
modeling as well as in devising novel flow control strategies is: what are the Reynolds number effects on the 
mean and statistical turbulence quantities and on the organized motions? Since the mean flow review of 
Coles (1962), the coherent structures, in low-Reynolds number wall-bounded flows, have been reviewed 
several times. However, the Reynolds number effects on the higher-order statistical turbulence quantities 
and on the coherent structures have not been reviewed thus far, and there are some unresolved aspects of the 
effects on even the mean flow at very high Reynolds numbers. Furthermore, a considerable volume of 
experimental and full-simulation data have been accumulated since 1962. The present article aims at further 
assimilation of those data, pointing to obvious gaps in the present state of knowledge and highlighting the 
misunderstood as well as the ill-understood aspects of Reynolds number effects. 
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NOMENCLATURE 

a pipe radius or channel half-width 

c longitudinal phase velocity 

V 
local skin-friction coefficient = t w / — pU0 

skin-friction value for negligible freestream 

turbulence 

CV,C' , C2 typical eddy lengths alongx,y, andz 

d vortex diameter 

dissipation of turbulence kinetic energy 

drag reduction with respect to reference (unaltered) case 

E energy 

/ bursting frequency, Hz 
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DR 

h 
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*z 
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R e « 

Re
C 

R e I 

Re, 

R e v 
Re r 

ReQ 

freestream turbulence parameter = Wi/ IVr
a] I \(L0 18) + 2]f 

freestream turbulence parameter modified by a damping factor 

= fsP
n 

flatness factor (or kurtosis) of streamwise velocity fluctuations 

= P)/kJ4 

flatness factor of normal velocity fluctuations 

Clauser's velocity-profile shape parameter 

u 

-J Ug-U dyl Ug-U dv 

riblet height 

shape factor = 5 / 6 

wavenumber 

spanwise wavenumber 

mixing length or hot-wire length 

size of largest eddies in the flow 

longitudinal dissipation length-scale in the freestream 

freestream Mach number 

root-mean-square value of the pressure fluctuations 

production of turbulence kinetic energy 

two-dimensional spetrum = P [k£,m+J 

twice the turbulence kinetic energy 

shear correlation coefficient = -uv I (wrmsurms) 

channel or pipe Reynolds number based on 

centerline velocity and channel half-width or radius 

a critical value of Re above which the turbulence structure 

changes 

Reynolds number based on plate length and freestream 

velocity 

turbulence Reynolds number = u'L/v 

surface-length Reynolds number = U^x/v 

vortex Reynolds number = V/v 

momentum-thickness Reynolds number = U QA> 

Re 

S.. 

J(du/dt) 
t 

T 

U, V), W 

U 

Y 

r 
5 

5* 

AC 
'/ 

1 
K 

xx xv xz 

w 

ar ny az 

ratio of outer length-scale ^8 or a) to inner length-scale (v/U ) 

(5 or a+is also used to notate same quantity) 

spanwise spacing of V-groove riblets 

skewness factor of streamwise velocity fluctuations = 

" 3 W"rms) 

skewness factor of normal velocity fluctuations 

skewness factor of velocity derivative with respect to time 

time 

bursting period 

freestream turbulence intensity = uxmsIUm 

components of velocity fluctuations along x, y, and z, 

respectively 

root-mean-square value of the streamwise velocity fluctuations 

time-mean (kinematic) Reynolds shear stress 

mean velocity within the boundary layer in the .r-direction 

centerline velocity in pipe or channel 

local friction velocity = (x^/p) 

velocity at edge of shear layer 

freestream velocity in boundary layer 

universal wake function 

longitudinal, surface normal, or spanwise coordinates, 

respectively 

location of peak Reynolds stress 

P damping factor = 1 + 3 -(Ree/M25)1 

intermittency factor 

circulation per unit length of a vortex sheet 

total circulation in a vortex tube 

boundary-layer thickness 

displacement thickness 

strength of the wake component in wall units 

change in skin friction due to freestream turbulence 

momentum thickness 

appropriately normalized transverse distance in a wake flow 

von Karman's constant 

Taylor's micro-scales or wavelengths along x, y, z, respectively 

coefficient of dynamic viscosity 

kinematic viscosity = u/p 

density 

wall-shear stress = ^(dU/dy)^ 

power spectrum of turbulent velocity or Reynolds stress 

fluctuations 

radian frequency = 2nf 

components of vorticity fluctuations along*, v , andz 

mean vorticity components along x, y , and z 

Subscripts: 

max maximum value 

ref reference (unaltered) case 

rms root mean square 

w variable computed at wall 

T value based on the shear stress at the wall 

co freestream condition 
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Superscript: 

+ non-dimensionalized with wall-layer scales, viz U for 

velocity, v/U for length, and v/U * for time 

' root-mean-square (rms) value 

1. INTRODUCTION 

1.1 Field versus laboratory flows 

It is difficult to overstate the technological importance of 
the turbulent wall-bounded flow. Vast amount of energy is 
spent in overcoming the turbulence skin-friction drag in 
pipelines and on air, water and land vehicles. For blunt 
bodies, eg, trucks and trains, the pressure drag resulting 
from boundary layer separation can be several orders of 
magnitude higher than the skin friction, and even more en­
ergy is wasted. Heat transfer and mixing processes crucially 
depend on the turbulent transport for their efficient attain­
ment. The Reynolds numbers encountered in many practical 
situations are typically orders of magnitude higher than 
those studied computationally or even experimentally (Fig 
1). Yet, our knowledge of high-Reynolds number flows is 
very limited and a complete understanding is yet to emerge. 
The existing knowledge base, accumulated mostly through 
physical as well as numerical experiments, is clearly 
skewed towards low Reynolds numbers. For many practical 
applications the key question is then what are the Reynolds 
number effects on the mean and statistical turbulence 
quantities and on the organized motions of turbulence? One 
always hopes that the flow characteristics become invariant 
at sufficiently high Reynolds number. That merely shifts the 
question to what is high enough? 

Consider the simplest possible turbulent wall-bounded 
flow, that over a smooth flat-plate at zero incidence to a 
uniform, incompressible flow or its close cousin the two-
dimensional channel flow. Leaving aside for a moment the 
fact that such idealized flow does not exist in practice, 
where three-dimensional, roughness, pressure-gradient, cur­
vature, wall compliance, heat transfer, compressibility, stra­
tification, and other effects might be present individually or 
collectively, the canonical problem itself is not well un­
derstood. Most disturbing from a practical point of view are 
the unknown effects of Reynolds number on the mean flow, 
the higher-order statistical quantities and the flow structure. 
The primary objective of the present article is to review the 

Typical lab 
or DNS National Transonic 

Facility 

Langley towing 
tank 

• Super pipe 

Flight/Ship 

state of the art of Reynolds number effects in wall-bounded 
shear-flow turbulence, with particular emphasis on the ca­
nonical boundary layer and channel flow problems. 

1.2 Reynolds number 

Reynolds number effects are intimately related to the con­
cept of dynamic similarity. In a given flow geometry, if L 
and U are the length and velocity scales, respectively, the 
non-dimensional equation of motion for an effectively in­
compressible fluid is given by: 

— + ( u . V ) u •• 
dt 

-VP+—V2S 
Re (1) 

where Re = UL/v, P is pressure and v is kinematic viscosity. 
This seemingly superficial non-dimensionalization reveals 
two important properties. The first is the concept of dyna­
mic similarity. No matter how L, U, and v are varied, as 
long as Re is the same in two geometrically similar flows, 
they have the same solution. Small-scale model testing of 
large-scale real-life flows is based on this property. 
Secondly, for a given geometry and boundary condition, the 
effect of changing L, U, or v, or any combination of them, 

« 

w 

t I 
Large Small 
Eddy Eddy 

Wave Number (k) 

(a) 

Atmosphere 

Small 
Eddy 

Fig 1. Ranges of momentum-thickness Reynolds number for different 
facilities and for field conditions. 

Fig 2. Energy spectra at low and high Reynolds numbers: (a) Low Reynolds 
number; (b) High Reynolds number 
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can be described uniquely by the change of Re alone. 
Although, the importance of Re was recognized earlier by 
Stokes, it has come to be termed Reynolds number in recog­
nition of Osborne Reynolds' telling demonstration of its 
effect on the onset of turbulence (Reynolds, 1883). Even 
today, the laminar-to-turbulent transition is one of the most 
dramatic Reynolds number effects and its rational computa­
tion continues to be a research challenge. 

Equation 1 shows that Re represents the relative impor­
tance of viscous and inviscid forces. Since three forces, viz 
inertia, pressure, and viscous, are in equilibrium, the bal­
ance can be described by the ratio of any two, although it 
has become customary to characterize the flow by the ratio 
of inertia to viscous forces. 

In this paper, only turbulent flows are considered be­
cause they are widely prevalent. The recent report by 
Bushnell et al (1993) treats Reynolds number similarity and 
scaling effects in laminar and transitional flows. The un­
derstanding of the effects of Reynolds number relies on our 
understanding of viscous forces. For a wall-bounded flow, 
this is true no matter how high the Reynolds number is. 
Experience shows that there is no practical Reynolds num­
ber where the no-slip boundary condition, which owes its 
origin to viscous effects, switches off. Since the net viscous 
force on an element of incompressible fluid is determined 
by the local gradients of vorticity, the understanding of the 
vorticity distribution is the key to determining Reynolds 
number effects. Vorticity can be produced only at a solid 
boundary and cannot be created or destroyed in the interior 
of a homogeneous fluid under normal conditions. 

The qualitative effects of Reynolds number on the scales 
of turbulence are demonstrated in the two velocity-fluctua­
tions spectra depicted in Fig 2. The large scale is only 
weakly dependent on Reynolds number (Townsend, 1976). 
However, as Reynolds number increases, the small scales 
become physically smaller (larger wavenumbers) and the 
diversity of intermediate scales between the large and small 
increases. In terms of organized motions in a turbulent 
boundary layer, the effect of Reynolds number on the om­
nipresent elongated vortex loops (horseshoes) is as sketched 
in Fig 3, from Head and Bandyopadhyay (1981). With in­
creasing Reynolds number, the aspect ratio of the constitu­
ent hairpin vortices increases while the vortices become 
skinnier. The related result, viz. the relative shrinking of the 
inner layer where viscous effects are stronger is shown in 
the mean-velocity profiles depicted in Fig 4. Significantly, 
the two flows have approximately the same boundary layer 
thickness (13 cm). While the inner layer occupies most of 

(b) M 

Fig 3. Qualitative effect of Reynolds number on features composing the 
outer region of a turbulent boundary layer (from Head and Bandyopadhyay, 
1981): (a)Vortex loop at very low Re; (b) Elongated loop or horseshoe at 
low to moderate Re; (c) Hairpin or vortex pair at moderate to high Re. 

the boundary layer for the low-Reynolds number flow, it 
shrinks to a very small proportion at high Reynolds number. 

1.3 Outline of present review 

In this article, the effects of Reynolds number on the mean 
flow, coherent structures and statistics of turbulent bound­
ary layers and channel flows are reviewed. Published data 
are re-examined in light of the following questions. (1) 
Does the boundary-layer turbulence structure change after 
the well known Reynolds number limit, viz when Re9 > 
6xl03? (2) Is it possible to disturb a high-Reynolds number, 
flat-plate turbulent boundary layer near the wall such that 
the recovery length is O[1005]? (3) How close is the nu­
merically simulated low-Reynolds number, flat-plate turbu­
lence structure to that observed experimentally? The turbu­
lence structure appears to change continuously with 
Reynolds number virtually throughout the boundary layer 
and sometimes in unexpected manners at high Reynolds 
numbers (Bandyopadhyay, 1991). 

It is relevant to acknowledge in here two recent doctoral 
theses by Kailasnath (1993) and Smith (1994), which came 
to our attention after the bulk of the present paper was 
written. Both dissertations address somewhat similar ques­
tions to those raised in here. Kailasnath (1993) amplifies on 
the notion of scale similarity using a statistical approach for 
obtaining valuable information on the structure of the in­
stantaneous momentum flux within laboratory as well as 
atmospheric turbulent boundary layers. Smith (1994) em­
phasizes Reynolds number effects on the structural aspects 
of boundary layers. 

The present paper is organized into 11 sections. 
Following the present introductory remarks, the contempo­
rary relevance of the general topic of Reynolds number ef­
fects and of the specific problems of flow control and post-
transition memory is given in Section 2. The different re­
gions of the boundary layer are reviewed in the following 
section. Section 4 highlights the qualitative differences 
between wall-bounded layers and free-shear flows. 
Reynolds number effects on the mean flow and on higher-

(a) (b) 
L. T 

• { - - - , - A -1 

/ = 900 

i . Lz . ^ ] \ J . 
o-c —*— v—*^ —-4 T - r"- i 

° t JL ' f 
I v. 

Fig 4. Mean-velocity profiles at low and high Reynolds numbers: (a) Reg = 

2060; 5+ = 887; 8 = 13.1 cm (from Kline et al, 1967); (b) Re9 = 38,000; 8+ 

= 17,350; 6 = 12.8 cm (from Tu and Willmarth, 1966). 
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order statistics are given in Sections 5 and 6, respectively. 
Outer and inner coherent structures and their interactions 
are recalled in Section 7. Brief remarks are made on flow 
control, numerical simulations, and non-canonical boundary 
layers in the following three sections. Finally, concluding 
remarks are given in Section 11. 

2. CONTEMPORARY RELEVANCE 

2.1 Primary issues 

Most studies on the structure of flat-plate turbulent bound­
ary layers are being carried out at rather low Reynolds 
numbers (Fig 1). The few existing high-Reynolds number 
wind- or water-tunnels are expensive to build and operate 
and are heavily scheduled with mostly developmental work. 
Full computational simulation of high-Reynolds number 
turbulent flows is beyond the reach of current computers. 
Since many practical flows have very high Reynolds num­
bers, the question is how relevant are the low-Reynolds 
number studies to practical situations? For this reason alone 
the issue of Reynolds number effects is important. The 
Reynolds number scaling laws are usually given by the 
wall-layer, outer-layer, or any mixed-layer length, time, and 
velocity scales which govern the variation of a mean or tur­
bulence quantity with Reynolds number. 

The subject is too broad and here it is discussed mostly 
in light of five questions. One of the earliest studies of the 
Reynolds number effect in turbulent boundary layers was 
due to Coles (1962). When measurements of mean-velocity 
profiles were expressed in inner-layer form based on di­
rectly measured local friction values, a logarithmic region 
was found to exist even at an Ree of 50xl03, where Ree is 
the Reynolds number based on momentum thickness and 
freestream velocity. The wall-layer variables appear to de­
scribe the mean flow in the inner layer universally in flat 
plates, pipes, and channels at all Reynolds numbers. 

On the other hand, in a boundary layer, the behavior of 
the outer layer, when expressed in terms of wall-layer vari­
ables by the strength of the wake component At/1", which is 
the maximum deviation of the mean-velocity profile from 
the log law, appeared to reach an asymptotic value for Ree 

> 6xl03. Above this limit, the inner- and outer-layer mean 
flows are expected to reach an asymptotic state which the 
turbulence quantities are also hypothesized to follow. This 
is, however, not the case since the wake component starts 
decreasing, albeit slowly, at about ReB > 15xl03. This raises 
the question, does the mean flow ever achieve true self-
preservation? 

The situation is murkier for higher-order statistics. 
Measurements in pipes (Morrison et al 1971), channels 
(Wei and Willmarth 1989), and boundary layers 
(Andreopoulos et al 1984; Erm et al 1987) are beginning to 
show that the turbulence quantities do not scale with wall-
layer variables even in the inner layer. Therefore, the ques­
tion arises, can we apply the mean-flow scales to turbu­
lence? 

Furthermore, the outer-layer-device drag reduction ex­
periments of Anders (1990a) show that above this Reynolds 
number limit, the maximum skin-friction reduction and the 
recovery length (the latter with some exception) do not re­
main constant but reduce with increasing Reynolds number. 
The loss of performance at higher Reynolds numbers is 
puzzling and Anders attributed it to a significant change in 
the turbulence structure. In this background, the question 
does the turbulence structure change when Re9 > 6xl03, is 
discussed. 

Consider another puzzling high-Reynolds number behav­
ior. In the fifties, Clauser had experimentally shown that in 
a turbulent boundary layer at a given Reynolds number, 
disturbances survive much longer in the outer layer than in 
the inner layer. He demonstrated this by placing a circular 
rod in the outer and inner layers of a fully-developed wall 
layer. In viscous drag-reduction techniques where a device 
drag penalty is involved, a recovery length of Of 1008] is 
desirable to achieve a net gain. To date, with outer-layer 
devices, such recovery lengths have been achieved only at 
low Reynolds numbers as mentioned earlier. One normally 
expects the recovery length to be far less if the disturbances 
are applied near the wall, and the length to reduce even 
more as Re9 is increased. However, published data are re­
examined here which shows that, in fact, at higher Reynolds 
numbers, an opposite trend sometimes takes place. This un­
expected result indicates a serious difficulty in the extrapo­
lation of low-Reynolds number results. The fourth question 
is concerned with this aspect of the Reynolds number 
effect. 

Spalart (1986) has numerically simulated a smooth flat-
plate turbulent boundary layer at Ree = 300, 670, and 1410. 
Robinson et al (1989) have analyzed the data base at Ree = 
670 and identified the organized structures. In the last part 
of the paper, the numerically obtained low-Reynolds num­
ber structures are compared with experimental observations. 

2.2 Turbulence modeling 

Full computational simulation of high-Reynolds number 
turbulent flows is beyond the reach of current capabilities. 
Understanding of turbulence and modeling will continue to 
play vital roles in the computation of high-Reynolds num­
ber practical flows using the Reynolds-averaged Navier-
Stokes equations (Reynolds, 1895). The mean flow review 
by Coles (1962) has had a great impact on turbulence 
modeling. However, that article did not cover any tur­
bulence quantities. Additionally, as will be discussed in 
Section 5, the effects of Reynolds number on even the mean 
flow at truly high Reynolds numbers (momentum thickness-
based Reynolds number Ree > 1.5xl04) are still, unfor­
tunately, not understood and are, surprisingly, even misun­
derstood and erroneously simplified. 

After the work of Coles, interest in organized motion or 
the so-called coherent structures, had increased. The coher­
ent stmctures of turbulent boundary layers, particularly for 
low-Re flows, have been reviewed several times 
(Willmarth, 1975a; 1975b; Willmarth and Bogar, 1977; 
Blackwelder, 1978; Cantwell, 1981; Hussain, 1983; Fiedler, 
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1986; Robinson, 1991). In these reviews, the kinematic 
features of coherent structures are discussed but, the 
Reynolds number dependence is by and large not covered. 
Furthermore, although these developments have greatly im­
proved our understanding of the turbulence production 
mechanism, their impact on turbulence modeling and flow 
control have been minimal. The structural modeling works 
of Perry and Chong (1982), Nagano and Tagawa (1990), 
and Bandyopadhyay and Balasubramanian (1993; 1994) are 
exceptions and hold some promise. 

The Direct Numerical Simulation (DNS) of turbulent 
boundary layers have so far been carried out up to an Re9 of 
1410 (Spalart, 1986). Since the computational resource re­
quired varies approximately as the cube of the Reynolds 
number, it would not be possible to simulate very high-
Reynolds number turbulent shear flows any time soon 
(Karniadakis and Orszag, 1993). This has created a resur­
gence of interest in turbulence modeling particularly for 
high-Reynolds number wall-bounded flows. Thus, there is a 
need to review the state of the art of Reynolds number ef­
fects on the mean flow, turbulence statistics, and coherent 
structures, so that the flow physics input to any new turbu­
lence model or flow control device is up to date. To be use­
ful to modeling or to flow management, seven requirements 
of this review paper can be specified: 

1. Evaluate the state of the art of aspects of the mean 
flow at truly high Reynolds numbers left open by Coles 
(1962). 

2. Examine experimental and numerical simulation data 
to determine the Reynolds number effects on conventional 
statistical turbulence quantities, particularly those which 
appear in the various forms of the Reynolds-averaged 
Navier-Stokes equations. 

3. Determine if the scaling laws of the mean flow apply 
to the higher-order turbulence statistics as commonly 
assumed. 

4. Critically investigate the issues of post-transition 
memory and probe resolution of existing turbulence meas­
urements, including such statistical quantities as root mean 
square and spectrum. 

5. Establish the state of the art of Reynolds number 
effects on the coherent structures or organized motions, 
while keeping an eye on the need of structural modeling. 

6. Attempt to bridge the gap between the coherent struc­
ture flow physics and Reynolds-averaged quantities, and 
thereby make the former useful to a practicing engineer. 

7. Finally, it is more useful to review the mean flow, the 
turbulence quantities and the organized motions in a unified 
manner than to treat them separately. The advantage is that 
it will then be possible to examine if the mean-flow scaling 
laws can indeed be extrapolated to turbulence. 

2.3 Flow contrtol and post transition memory 

Apart from that in turbulence modeling, knowledge of the 
Reynolds number effects is useful to flow control. This is 
because experimental investigations at low Reynolds num­
bers, ie lower speeds and/or smaller length scales, are less 
expensive. Most flow control devices are, therefore, devel­

oped and tested at rather low speeds. Extrapolation to field 
conditions is not always straightforward though, and it often 
comes to grief. The relevance of Reynolds number effects 
to flow control is particularly telling in case of full numeri­
cal simulation because it is currently limited to Reynolds 
numbers that are not that far from transitional values. 

One of the objectives of this review article is to highlight 
the misunderstood and ill-understood aspects of the 
Reynolds number effects. This should help guide flow con­
trol, turbulence modeling research, and data gathering for 
code validation in the right direction. Two examples would 
serve to make the point. 

In viscous drag reduction techniques where a device drag 
penalty is involved, as with outer layer devices (OLD), a 
recovery length -1008 is desirable to achieve a net gain. As 
indicated in Section 2.1, this does happen at low Ree (< 
6xl03) (Anders, 1990a). However, when Anders examined 
his outer layer devices at higher Reynolds numbers, to his 
surprise, the drag reduction performance was reduced and 
the device was no longer a viable candidate for viscous drag 
reduction. For both low Re9 (< 6x103) and high (> 6x103), 
the effectiveness of OLD diminishes with the increase of 
Reynolds number (Bandyopadhyay, 1986a; Anders, 1990a). 

The continued drop in the drag reduction comes as a sur­
prise because the mean flow analysis of Coles (1962) indi­
cates an asymptotic state of the outer layer to have been 
reached above Ree > 6xl03. Anders attributed the irrepro-
ducibility of the low-Reynolds number behavior at higher 
values to a significant change in the turbulence structure at 
higher Ree. As discussed by Head and Bandyopadhyay 
(1981), a continuous change in the ratio of the outer to the 
inner layer, U£/v. is observed even beyond Re9 = 6x103. 
This also suggests that £/T8/v may be more important to tur­
bulence production than the wake component ALT'. 

The above example shows that the 1962 review work of 
Coles is not always providing sufficient guidance on the 
Reynolds number effects to the research application engi­
neer. The reason seems to be that our knowledge of the 
Reynolds number effects on the mean flow is not enough 
for many applications (and modeling), and that we also 
need to know the Reynolds number effects on the turbu­
lence. Considerable amount of statistical mean and turbu­
lent flow data have come out of the experimental and nu­
merical simulations since 1962 and it would be useful to 
review the state of the art. 

That, being armed with the knowledge of Reynolds 
number effects on the mean turbulent flow alone does not 
allow one to address all practical problems, can be demon­
strated in the unexpected post-transition result reported by 
Klebanoff and Diehl (1952). Their measurements on artifi­
cially thickened boundary layers (see Section 8.3.2 of the 
present article) showed that the return to the "equilibrium" 
state is slowed down as the reference Reynolds number is 
increased and not decreased! This raises the question, are 
the near-wall transition-trip disturbances surviving for in­
creasingly large x/5 as the Reynolds number is increased? 
This question is clearly important to model testing and code 
validation data, where roughness is used to trip and thicken 
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the boundary layer to simulate high Reynolds numbers or 
flight conditions. Thus, there is also a need to review avail­
able experimental data containing the Reynolds number de­
pendence of the distance up to which transition memory 
survives. 

3. FLOW REGIMES 

An inspection of the distribution of viscous and turbulence 
shear stresses in a typical wall-bounded flow demonstrates 
the presence of three distinct regions. Figure 5, adapted by 
Sreenivasan (1989) from the smooth-pipe-flow data of 
Nikuradse (1932) and Laufer (1954), shows such distribu­
tion in wall units (friction velocity, Ur = (xjp)m, used as 
velocity scale, and the ratio of kinematic viscosity to 
friction velocity used as length scale), 

Pipe (or channel) flow data are preferable to flat-plate 
boundary layer experiments since the Reynolds stress, a 
rather difficult quantity to measure accurately, can be com­
puted exactly for fully-developed channel flows from the 
relatively simple measurements of mean-velocity profile 
and pressure gradient (see Section 6.2). The semi-log plot in 
Fig 5 enhances the importance of the thin near-wall region 
relative to the rest of the shear layer. 

The broken line in the figure is the time-averaged vis­
cous stress distribution computed by differentiating the 
mean-velocity profile. Note that this laminar flow concept 
of shear may not be relevant to the time-dependent turbu­
lent flow, since turbulence models based on the mean ve­
locity gradients have not been widely successful (eg, 
Bradshaw et al 1967). Nevertheless, it is clear from the fig­
ure that the mean viscous stress, u. (dU/dy), is important 
only near the wall. This wall layer is followed by a region 
of approximately constant Reynolds stress. Finally, an outer 

Re* 

O 140 (Nikuradse) 

• 1050 (Laufer) 

• 8600 (Laufer) 

9 5.54 x W4 (Nikuradse) 

Fig 5. Distribution of viscous and turbulence shear stresses in wall-bounded 
flows (from Sreenivasan, 1989). 

layer1 is characterized by a diminishing turbulence shear 
stress, reaching zero at the centerline of the pipe. Unlike the 
second and third regimes, the extent of the first region does 
not depend on Reynolds number. Both the viscous region 
and the constant-Reynolds stress region are similar in all 
wall-bounded flows. In contrast, the outer layer is different 
in internal flows and boundary layers. Profiles of the mean 
velocity and other turbulence statistics can be constructed 
from scaling considerations of the three distinct regimes, as 
will be seen in the following three subsections. 

Note that the Reynolds number used as a parameter in 
Fig 5 is defined as Re* = Uxa/v; that is the channel half-
width (or boundary-layer thickness) expressed in wall units: 
a+ (or 5+). Although numerically Re* and 5+ are the same, 
their difference in significance and usage should be clari­
fied. The variable 8+ denotes the ratio of the outer- to inner-
layer thickness, and represents the degree of shrinking of 
the latter with respect to the former which changes little 
with Reynolds number (see Fig 4). It emphasizes the dis­
parity of the two scales and the diversity of the intermediate 
and interacting scales at higher Reynolds numbers. As will 
be seen in Section 7, 5+ indicates the reduction of the hair­
pin vortex diameter and the increase in its aspect ratio as 
the Reynolds number increases (Head and Bandyopadhyay, 
1981). The value of 8+ in a typical laboratory experiment is 
O[1000], while it approaches 100,000 in the boundary layer 
developing over the space shuttle (Bandyopadhyay, 1990). 
This variable is pertinent to the understanding of the 
mechanism of drag reduction by outer-layer devices 
(Anders, 1990b). On the other hand, Re* is a Reynolds 
number, also called a stability parameter by Black (1968). 
In Black's work and later in Sreenivasan's (1988), Re* indi­
cates a Reynolds number associated with the quasi-periodic 
instability and breakup process that is hypothesized to be 
responsible for the regeneration of turbulence in a wall-
bounded flow (Sections 4 and 7). Note that, for a smooth 
wall, Re* increases monotonically with Ree and never 
reaches an asymptote. 

3.1 Viscous region 

Viscosity appears to be important only up to y+ = 30. The 
viscous region can be subdivided into two subregions: the 
viscous sublayer and the buffer layer (Fig 6). Very close to 
the wall, 0 < y+ < 5, the turbulence shear stress is nearly 
zero which implies that the only relevant quantities there 
are the kinematic viscosity v and friction velocity Ux.

 2 In 
this viscous sublayer, several turbulence statistics can be 
asymptotically estimated from considerations of the no-slip 
condition and continuity and dynamical equations. Fol­
lowing Monin and Yaglom (1971) and using experimental 
data, Sreenivasan (1989) gives the following Taylor's series 
expressions, in wall units, for the mean streamwise velocity, 
for the root-mean-square value of the three fluctuating 

Called core region in internal flows. 
For hydrautically rough walls, ie where the average roughness height is 
greater than the viscous sublayer thickness, the relevant scaling para­
meters are the characteristic roughness neight and friction velocity. 
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velocity components and for the Reynolds stress, re­
spectively: 

if 

u'+ 

u,+ 

w'+ 

-uu 

= ,y+ - lxlO-V 4 + 1.6xlO-6^+5+..„ 

= 03y+ + cly
+2+ .... 

= 0.008 y+2 + c2y
+3 + .... 

= O.Q7y+ + ciy
+2+ .... 

= 4xlO-V+ 3-8xlO-6 /4+.-

(2) 

(3) 

(4) 

(5) 

(6) 

Fory1" < 5, the leading term of each of the above expan­
sions suffices. Note however that the experimentally de­
termined leading coefficients in Eqs 3-5 are lower than 
those computed from direct numerical simulations. 
Mansour et al (1988) analyzed the channel-flow data base 
generated by Kim et al (1987) and reported the following 
leading-term coefficients for u'+, u'+ and w'+: 0.36, 0.0086, 
and 0.19, respectively. The last coefficient in particular is 
almost three times that of the corresponding leading term 
determined experimentally. The reason might be due to the 
rapid drop in the spanwise velocity fluctuations as the wall 
is approached, so a very small hot-wire probe or LDV focus 
would be needed to realize the true value. 

With three terms, Eq 2 for the mean velocity is valid up 
to y+ = 20. Note that the constants in the above equations 
are not necessarily universal. As will be discussed in 

Wake region 

—•~~~™~~-*™«* 0 . 2 ( 5 (lOOv/Ur at Re^ = 103) 

(5500vIVt at Ree = 105) 

Log region 
(overlap layer) 

— — 3QvlUx (0.065 at Refl = 103) 
(0.0015 at Re„ = 105) 

Buffer layer 

Viscous sublayer 
7F7777777777//////7/. y = 0 (Wall) 
Fig 6. Schematic of the different regions within a wall-bounded flow at 
typical low and high Reynolds numbers. 

Section 6, clearly discernible Reynolds number effects will 
be demonstrated for all higher-order statistical quantities 
even in the near-wall region. 

The buffer layer is where both the viscous stress and the 
turbulence shear stress are important, and is where the peak 
production and dissipation of turbulence kinetic energy oc­
cur (at about y+ = 12, seemingly independent of the global 
Reynolds number). In here, the characteristic local 
Reynolds number of y UJv = 30 is exceedingly low and 
turbulence cannot be maintained unless buffeted constantly 
by strong disturbances, presumably from the outer layer. 
This region merges with the constant-Reynolds stress layer. 

3.2 Constant-Reynolds stress region 
This region, loosely interpreted3 to include all points within 
the - 3dB points of the peak Reynolds stress, extends from 
y+ = 30 to y/a = 0.2, where a is the pipe radius. Here, the 
distance from the wall y is much larger than the viscous 
length-scale, v/Ux , but much smaller than the pipe radius 
(or the boundary layer thickness, 8, for an external flow). 
Note that the upper extent of this region is a constant frac­
tion of the boundary layer thickness, but varies with 
Reynolds number when expressed in wall units (see Fig 6). 

In this region, viscous stresses are negligible and the 
momentum flux is accomplished nearly entirely by turbu­
lence. The only relevant length scale is y itself, and the 
square root of the nearly constant Reynolds stress, 

(-«omax)1/2, is the appropriate velocity scale. Therefore, the 
mean-velocity gradient can be expressed as: 

aU/Sy~(-^max)1/2/y (7) 

The well-known logarithmic velocity profile follows di­
rectly from integrating Eq 7 and using the velocity at the 
edge of the viscous sublayer as a boundary condition: 

If = (1/K) ln(y+) + B (8) 

where IC is the von Karman constant. Both IC and B are pre­
sumably universal constants and are determined empirically 
for flat-plate boundary layers to be approximately 0.41 and 
5.0, respectively. Slightly different values are used for the 
two constants in the case of pipe or channel flows. In that 
case, Eq 8 holds almost up to the centerline of the channel. 
As the Reynolds number increases, the extent of the loga­
rithmic region (in wall units) increases and the maximum 
Reynolds stress approaches the value of the viscous stress at 

the wall (-uomax/C^2 -» 1). 
Several other methods can be used to derive the loga­

rithmic velocity profile. A mixing length, based on momen­
tum transport, that simply varies linearly with distance from 
the wall, t = K y, again yields Eq 8. Millikan's (1939) 
asymptotic analysis recovers the log relation by assuming 
the existence of a region of overlap where both the inner 
and outer laws are simultaneously valid (see also the rarely 
cited albeit relevant article by Izakson, 1937). All models 
invariably rely on the presence of the constant-stress layer 

Strictly speaking, the Reynolds stress is not really constant anywhere in a 
pipe or channel flow. 
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Fig 7. Normalized turbulence kinetic energy production rate as a function of normal distance from the wall. Data for a typical laboratory flat-plate boundary 
layer (from Kline et al, 1967). 

experimentally observed at high Reynolds number. Despite 
copious evidence for the existence of a logarithmic region 
in the mean-velocity profile, the whole log-law scenario has 
been periodically questioned (see, for example, Barenblatt, 
1979; 1993; Malkus, 1979; Long and Chen, 1981; George et 
al 1992; 1994; Barenblatt and Prostokishin, 1993). We will 
return to this point in Section 5.5. 

The arguments used by Millikan (1939) to derive the 
logarithmic relation for the boundary layer are analogous to 
those employed to establish the universal equilibrium the­
ory of turbulence, called the theory of local similarity by its 
originator Kolmogorov (1941a; 1941b; 1941c; 1962). For 
the boundary layer, an inertia! sublayer exists at sufficiently 
large Reynolds numbers and the overall flow dynamics is 
independent of viscosity, which merely provides a momen­
tum sink of prescribed strength at the wall. Similarly, an in-
ertial subrange exists in the turbulence energy spectrum 
when the Reynolds number is large enough. There, the 
wavenumber is larger than that for the large eddies but 
smaller than the dissipative wavenumbers. The viscosity 
again provides the dissipative sink for kinetic energy at the 
small-scale end of the turbulence spectrum. The spectral 
shape in the inertial subrange is completely determined by 
the energy flux across the wavenumber domain. 

Similar scaling arguments to those leading to Eqs 7 and 
8 can be used in the constant-turbulent stress region to show 
that:4 

u' IUr = constant = 2.0 

u'/C/, = constant =1.0 

W IUT = constant = 1.4 

K.E. =DK.E = u^<y 

(9) 

(10) 

(11) 

(12) 

where PKE and DKE are the production and dissipation of 
turbulence kinetic energy, respectively. Additionally, a 
portion of the power spectrum for each of the three velocity 
components exhibits a -1 power law in this same region 
governed by a constant turbulence shear stress transmitted 
across its different fluid layers. 

The total stress is approximately constant throughout the 
viscous layer and the constant-Reynolds stress region. This 
is the so-called inner layer (see Fig 7) and for a smooth wall 
the mean-velocity profile there is given by the unique 
similarity law of the wall, first formulated by Prandtl 
(1925): 

lT=f(y+) (13) 

The value of the constants in Eqs 9-12 are determined empirically from 
mostly low-Reynolds number experiments. Again, Section 6 will reveal 
that these constants depend in fact on the Reynolds number. 

where / is a universal function presumably independent of 
Reynolds number and streamwise location. The inner law is 
the same for both internal and external flows. 

3.3 Outer layer 

Beyond the constant-stress region, an outer layer is charac­
terized by a diminishing turbulence shear stress. Note that 
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some researchers include the constant-Reynolds stress re­
gion as part of the outer region. This is perhaps an accurate 
inclusion since the part of the boundary layer where the 
logarithmic law is valid is, strictly speaking, the region of 
overlap between the inner and outer laws (see Fig 7). 

In internal flows, intermittency of turbulence and inter­
action with potential freestream are absent. There is, how­
ever, an interaction of turbulence from the opposite wall in 
case of a two-dimensional channel and this is even more 
complex in case of a circular pipe. Furthermore, fully-de­
veloped conditions for pipes and channels are defined as 
that all time-averaged flow quantities (except static pres­
sure) are independent of x. Therefore, the core region of a 
pipe or channel flow differs from the outer layer of a 
growing boundary layer. 

The appropriate length scale in the core region is the 
pipe radius a (or the boundary-layer thickness, 8, for an 
external flow). The mean-velocity profile is characterized 
by the velocity defect (U0 - U), where U0 is the velocity at 
the edge of the shear layer (centerline velocity JJi for a pipe 
flow or freestream velocity Ux for a boundary layer). The 
velocity-defect (or, more appropriately, momentum-defect) 
law, formulated by von Karman (1930), is given by a sec­
ond universal function: 

(U0-U)/UT=g(y/8) (14) 

This equation is valid even in the logarithmic region and 
appears to be well confirmed experimentally. 

For a turbulent boundary layer, Coles (1956) combined 
the defect law and the inner law to give the following em­
pirical velocity profile valid throughout the entire wall-
bounded shear layer: 

Fig 8. Turbulence energy balance in a typical plane wake (from Townsend, 
1976). 

U+ =f(y+) + (TI/K) W(ylh) (15) 

where ic is the von Karman constant and IT is a profile pa­
rameter that depends strongly on Re for small Reynolds 
numbers. Coles' idea is that a typical boundary layer flow 
can be viewed as a wake-like structure which is constrained 
by a wall. Intermittency and entrainment give rise to the 
wake-like behavior of the outer part of the flow, which is 
sensitive to pressure gradient and freestream turbulence. 
The wall constraint is closely related to the magnitude of 
the surface shear stress, and is sensitive to the wall rough­
ness and other surface conditions. 

For equilibrium flows (Clauser, 1954), the profile pa­
rameter IT is independent of streamwise location. The uni­
versal wake function W(ylb) is the same for all two-dimen­
sional boundary-layer flows. Its form is similar to that de­
scribing a wake flow or more precisely the mean-velocity 
profile at a point of separation or reattachment. For exam­
ple, the wake function can be adequately represented by: 

<f)=2 *»2[fi] 
Note however that this simple expression obtained empiri­
cally by Coles (1969) does not yield zero velocity gradient 
at the edge of the boundary layer, as it should. Lewkowicz 
(1982) proposed an alternative quartic polynomial which 
removes this deficiency. 

At the same Reynolds number, deviation of the actual 
mean-velocity distribution from the logarithmic profile in 
the core region of a pipe or channel flow is smaller than 
that in the outer region of a boundary layer. In fact, as 
mentioned in Section 3.2, the logarithmic velocity profile, 
Eq 8 with slightly modified constants ic and B, holds ap­
proximately up to the centerline of the pipe. 

4. COMPARISON TO OTHER SHEAR FLOWS 

Before proceeding to investigate the specific effects of 
Reynolds number on the mean and turbulence quantities of 
wall-bounded flows, it is instructive to give a coarse com­
parison between such flows on the one hand and free-shear 
flows on the other. As it will be illustrated, the presence of 
the wall is of paramount importance to the issue at hand. No 
matter how large the Reynolds number is, viscosity must be 
important in a progressively shrinking region close to the 
wall and Reynolds number dependence persists indefinitely. 

Wakes, jets and mixing layers are profoundly different 
from channel and pipe flows and boundary layers. The ab­
sence of the wall in free-shear flows implies that at suffi­
ciently high Reynolds numbers, the flow is nearly inviscid 
and by implication Reynolds number-independent 
(Dimotakis, 1991; 1993). For wall-bounded flows, on the 
other hand, there is always a small, progressively shrinking 
region near the surface where viscosity must be important, 
no matter how large the Reynolds number is. 

In boundary layers and channel flows, the overall behav­
ior and gross structure of turbulence is always affected by 
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Fig 9. Mean streamwise velocity and mean spanwise vorticity distributions in different shear flows (from Roshko, 1992). 

viscosity near the wall, while the direct effect of viscosity 
gradually diminishes away from the surface. This implies 
that the velocity and length scales must be different near the 
wall and away from it. The disparity of scales for wall-
bounded flows increases with Reynolds number and true 
self-preservation may never be achieved, unless the inner 
and outer scales are forced to be proportional at all 
Reynolds numbers. This latter scenario can be realized, for 
example, in the very special case of flow between two 
planes converging at a prescribed angle. 

In wall-bounded flows, very large levels of turbulent 
fluctuations are maintained close to the wall despite the 
strong viscous as well as turbulent diffusion. As indicated in 
Fig 7, at a typical laboratory Reynolds number of say Ree = 
O[103], more than about a third of the total turbulence ki­
netic energy production (and dissipation) occurs in the 2% 
of the boundary-layer thickness adjacent to the wall. The 
fraction of this thickness decreases as the Reynolds number 
increases (Fig 4). The near-wall region is directly affected 
by viscosity5 and its importance to the maintenance of tur­
bulence is clearly disproportional to its minute size. 

5 Through the action of viscous stresses for a smooth wall, or through the 
action of pressure drag resulting from the separated flow around discrete 
elements of sufficient size for rough walls. 

The thinness of the viscous sublayer presents a great 
challenge to both physical and numerical experiments. 
Since this region is closest to the wall and is where drag 
acts, it is extremely important at all Reynolds numbers. Yet 
in contemporary direct numerical simulations, the viscous 
sublayer of 5 wall units is resolved only up to 1.4 wall 
units. In measurements, probe resolutions are even worse; 
other than in low-Reynolds number or oil-channel ex­
periments, a probe length of (+ < 7 is indeed rare 
(Bandyopadhyay, 1991). 

In free-shear layers, on the other hand, energy produc­
tion peaks near the inflection points of the mean-velocity 
profile. Both production and dissipation are spread over the 
entire flow width as shown in Fig 8 depicting the turbulence 
energy balance for a typical two-dimensional wake. Above 
a reasonably modest Reynolds number, O[103], all turbu­
lence quantities become invariant to additional changes in 
Reynolds number. 

Despite these differences between boundary layers and 
free-shear flows, there are also some similarities. The outer 
region of a boundary layer is characterized by an intermit­
tent rotational/irrotational flow, much the same as that ob­
served in all free-shear flows. Moreover, the outer flow is 
more or less inviscid at sufficiently high Reynolds numbers, 
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again being similar to jets, wakes and mixing layers. The 
interaction between the outer, or wake, region of a turbulent 
boundary layer and the potential flow in the freestream is 
also similar to that in wakes and other free-shear flows. The 
above are observational similarities and differences be­
tween the wall-bounded turbulent flows and the free-shear 
layers. In the following, they are compared based on dy­
namic issues like the applicability of an inflectional inviscid 
breakdown mechanism, and it is shown that the subject is 
still wide open. 

Inviscid stability theory has been successfully used to 
predict the observed coherent structures in turbulent free-
shear flows, but it is not clear that similar arguments can be 
made when a wall is present. In other words, it is not obvi­
ous that the same inviscid, mean-flow breakdown mecha­
nism responsible for generating the large eddies in, say, a 
mixing layer is operable in the case of a boundary layer. 
Consider the mean streamwise velocity and mean spanwise 
vorticity distributions sketched in Fig 9, from Roshko 
(1992), for four different shear flows. A two-dimensional 
mixing layer is modeled as a single vortex sheet placed at 
the location of peak vorticity (at the point of inflection of 
the mean-velocity profile). The local circulation per unit 
length of the vortex sheet, y(x), is equal to the integral of 
the mean spanwise vorticity, Clz, across the shear layer. 

This vortex sheet is inviscidly unstable to two-dimen­
sional perturbations and the resulting Kelvin-Helmholtz in­
stability eventually evolves into the omnipresent two-di­
mensional vortices, observed even in high-Reynolds num­
ber mixing layers. The resulting vortex blobs correspond to 
the saturation state of this instability. As indicated in the 
sketch, circulation in the blobs is conserved, r= y(x) Ax. 
Secondary instabilities of the roll-up structures result in 
smaller longitudinal vortices and other three-dimensional, 
hairpin-like eddies. 

Similar reasoning lead to the in-phase counter-rotating 
vortices for plane jets and the staggered Karman vortex 
street for two-dimensional wakes. As sketched in Fig 9, 
both jets and wakes can be modeled as two vortex sheets 
with opposite signs of vorticity. Again, each sheet is located 
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Fig 10. Comparison of mean-velocity profiles with logarithmic law at low 
Reynolds numbers. Boundary layer data from Purtell et al (1981). 

at the location of spanwise vorticity extrema, and total cir­
culation is conserved. 

For a turbulent wall-bounded flow, however, it is not 
obvious that the observed large-eddy structures (Section 7) 
can be derived using similar inviscid arguments. If the 
boundary layer is modeled by a vortex sheet in which the 
entire mean flow vorticity has been concentrated, the pres­
ence of the wall imposes a boundary condition that necessi­
tates the use of an image vortex sheet of opposite sign of 
vorticity. Such considerations led Sreenivasan (1988) to 
propose that the large eddies are the result of an instability 
of a caricature of the real boundary layer. Two- and three-
dimensional instabilities, both inviscid and viscous, of this 
caricature flow lead to a plausible explanation for many ob­
served features including the double-roller structures, hair­
pin eddies and low-speed streaks (see Section 7 of the pre­
sent article). 

It turns out that a somewhat similar argument was ad­
vanced two decades earlier by Black (1968). He treats the 
mean-flow breakdown as an intermittent, three-dimen­
sional, inviscid process, where a mechanism analogous to 
the starting vortex of an impulsively started airfoil is in 
play. He thereby successfully predicts the formation of an 
array of hairpin vortices due to a passing instability wave. 
Note that while Theodorsen (1955) predicted the formation 
of hairpin vortices, the aspect of an array of them is absent 
in his work. In Black's work t/.8/v appears as an important 
stability parameter. Mention should also be made of the 
waveguide theory developed by Landahl (1967; 1972; 1977; 
1980; 1990) to explain the cause and effect relationships for 
the variety of coherent structures observed in turbulent 
boundary layers. 

In Sreenivasan's model a fat vortex sheet and its image 
are located on either side of the wall at a distance corre­
sponding to the position of the peak Reynolds stress. 
Because of the absence of inflection points in the interior of 
the canonical turbulent flow, Sreenivasan (1988) chose the 
alternative location of peak based upon experience with 
transitional boundary layers.6 From all available boundary 
layer as well as channel flow data, this location appears to 
scale with the geometric mean of the inner and outer scales. 
Sreenivasan (1988) termed that position the critical layer,7 

although any evidence for the existence of such a two-di­
mensional layer, where small perturbations are presumed to 
grow rapidly, is lacking. Using linear stability theory, 
Sreenivasan successfully showed that the primary instability 
of the vortex sheet and its image yields two-dimensional 
roll-up structures, which in turn excite low-speed streaks 
and bursting. Subsequent instability of the roll-up structures 
leads to hairpin eddies and double-roller structures. One 
problem with this picture is that, unlike the case of free-
shear flows, the predicted two-dimensional structures have 

Note that in the past, both Clauser (1956) and Corrsin (1957) have also 
attempted to treat the turbulent regenerative process as primarily similar to 
the breakdown mechanism of a critical laminar layer. 
In a transitional wall-bounded flow, the location of peak Reynolds stress 
coincides with the critical-layer position. Since this location shows similar 
trends with Reynolds number to that in a turbulent flow (see the 
lowermost two data points in Fig 34b), Sreenivasan (1988) chose to place 
his proposed vortex sheet at this location. 
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never been observed in an actual turbulent wall-bounded 
flow. Sreenivasan (1988) himself allows that his simplistic 
model is unfinished and has a number of weaknesses but of­
fers it as a target for useful criticism. 

The arguments above indicate that the existence of an 
inviscid breakdown mechanism responsible for the self-
sustenance of the turbulence has not been firmly estab­
lished. In other words, it is not clear that the observed co­
herent structures in a boundary layer or channel flow are the 
result of an instability of the mean flow or its caricature. 
Until this issue is resolved, progress in the understanding of 
wall-bounded flows will remain lagging behind that of free-
shear flows. Despite the importance of this dynamical issue, 
research on the organized nature of turbulent boundary lay­
ers has remained confined to the kinematics, and high-pay­
off turbulence control strategies are yet to be developed. 

5. MEAN FLOW 

Before investigating the issue of Reynolds number effects 
on coherent structures, available data for the mean velocity 
and higher-order statistics of wall-bounded flows are re­
viewed in the present and following sections. Section 5 fo­
cuses on the Reynolds number effects on the mean 
streamwise velocity, and Section 6 discusses these effects 
on rms velocity fluctuations, Reynolds stress, spectra, 
skewness and flatness factors, and rms and spectrum of 
wall-pressure fluctuations. 

5.1 Streamwise velocity 

The mean flow velocity in the streamwise direction is a 
30 r 

relatively easy quantity to measure and almost every paper 
on wall-bounded flows has such measurements (see, for ex­
ample, Preston and Sweeting, 1944; Laufer, 1951; Comte-
Bellot, 1965; Eckelmann, 1974; Purtell et al, 1981; 
Andreopoulos et al, 1984; and Wei and Willmarth, 1989). 
Requirements for probe resolution are modest and, except 
very near the wall, most published data are reliable to better 
than 1%. This is obviously not the case for measurements of 
higher-order statistics, and this point will be revisited in the 
following section. 

For a turbulent wall-bounded flow, the region directly af­
fected by viscosity, the viscous sublayer plus the buffer 
layer, occupies progressively smaller proportion of the 
boundary-layer thickness as the Reynolds number increases 
(see Fig 6). The rest of the flow is dominated by inertia and 
the effect of viscosity enters only as an inner boundary 
condition set by the viscous region. It is not surprising, 
therefore, that the Reynolds number has a considerable ef­
fect on the velocity profile. As Re9 increases, the mean-ve­
locity profile becomes fuller and the shape factor, H, de­
creases accordingly. For example, at ReG = 2000, H= 1.41, 
and at Ree = 10,000, H = 1.33. The effect is even more pro­
nounced at Reynolds numbers lower than 2000. In a laminar 
flat-plate flow, in contrast, viscosity is important across the 
entire layer and the shape factor is independent of Reynolds 
number. 

Available data appear to indicate that the wall-layer 
variables universally describe the streamwise mean velocity 
in the inner layer of smooth flat plates, pipes and channels 
at all Reynolds numbers. Figs 10-12 illustrate this for 
boundary layers and channel flows for a wide range of 
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Fig 11. Non-dimensionalized mean-velocity profiles at high Reynolds numbers. Boundary layer data from Andreopoulos et al (1984). 
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Reynolds numbers. The low-Reynolds number boundary 
layer data of Purtell et al (1981) in Fig 10 indicate the pres­
ence of a logarithmic region for Re9 as low as 500. This is 
rather surprising considering that at this Reynolds number a 
constant-stress region is virtually non-existent and the 

maximum Reynolds stress is substantially less than Jj\, 
However, in deriving the log law, Eq 8, the presumably 
constant velocity-scale has a weak, square-root dependence 
on the Reynolds stress. The extent of the log region, ex­
pressed in wall units, increases with Reynolds number but is 
a constant fraction of the boundary layer thickness (Fig 6). 

The single straight line in Fig 10 does not support 
Simpson's (1970; 1976) claim that the law-of-the-wall, es­
pecially ic, varies with Reynolds number,8 nor the assertion 
by Landweber (1953), Preston (1958) and Granville (1977) 
that the logarithmic region disappears all together at low 
Reynolds numbers. An important question is: What is the 
minimum Ree at which a log region is first established? 
Coles (1962) analysis of wake component indicates that it is 
zero at Ree 600. The data of Bandyopadhyay and Ahmed 
(1993) indicate that Clauser's outer-layer shape parameter, 
G, reaches zero at Ree = 425. These can be regarded as two 
indications of a minimum value, supporting the experimen­
tal findings of Purtell et al (1981) depicted in Fig 10. 

At low Reynolds numbers, the large scales of the turbu­
lent fluctuations dominate its dynamics. The logarithmic 
region appears to be an inherent characteristic of the turbu­
lent boundary layer and to be associated with the large ed­
dies. Because of the persistence of the log region to 
Reynolds numbers just above transition, Purtell et al (1981) 
suggest that the large-scale structures in the turbulent 
boundary layer are related to, if not simply composed of, 
the hairpin eddies produced during the final stages of lami­
nar-to-turbulent transition. 

Andreopoulos et al (1984) provide mean-flow data for 
higher Reynolds number boundary layers. Figure 11 depicts 
their normalized data for the four Reynolds numbers Re9 = 
3624; 5535; 12,436 and 15,406. All three flow regimes de­
scribed in Section 3 are apparent in the different mean-ve­
locity profiles. Again, inner scaling appears to collapse the 
data in the inner layer (viscous plus logarithmic regions) 
onto a single curve. 

Similar results are observed in the channel flow data of 
Wei and Willmarth (1989) depicted in Fig 12. Here the 
Reynolds number is based on the centerline velocity and the 
channel half-width and ranges from Rea = 2,970 to Refl = 
39,582. As expected, the wake component in the mean-ve­
locity profiles of the channel flow is much weaker than that 
in the boundary layer data. 

5.2 Von Karman constant 

As discussed in Section 5.1, provided that a log region does 
indeed exist (see Section 5.5), Purtell et afs (1981) meas-

Note, however, the observation by George et al (1993), discussed in 
Section 5.5, that the superficial collapse in Purtell et a/'s (1981) data 
results from a priori assuming the existence of a log region and using the 
velocity data to compute U . 
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urements in low-Reynolds number boundary layers confirm 
that the law of the wall does not vary with Reynolds num­
ber, thus implying a truly constant value of the von 
Karman's constant. Close to a decade earlier, Huffman and 
Bradshaw (1972) analyzed the data from several other low-
Reynolds number experiments and arrived at the same 
conclusion. At the other extreme, Grigson (1992) used 
model and field data to show the constancy of K for 
Reynolds numbers up to Rex = 4x109. Both the low- and 
high-Reynolds number results refute an earlier claim by 
Simpson (1970) that the von Karman constant varies with 
Reynolds number. Additionally, as illustrated below, a 
rather simple kinematic argument can be invoked to support 
the universality of ic (Bandyopadhyay, 1991). 

Based on two-point velocity-correlation measurements, 
Townsend (1976) proposes the double-cone wall grazing 
eddy as the prototypal coherent structure in the near-wall 
region. This vortex, which satisfies the wall constraint, is 
the attached analog to his double-roller eddy of free-shear 
flows. The coherent structure is in contact with the wall 
over its whole length and vortex stretching is ignored. Its 
diameter must then bed = 2y, where y is the location of the 
vortex center. 

Of relevance here is Robinson's (1990) observation that 
the near-wall streamwise vortices frequently detected in 
low-Reynolds number direct numerical simulations have 
mean diameters that vary with distance from the wall ac­
cording to the linear relation: 

ct = Ky+ (17) 

where d is the mean vortex diameter and ic is the von 
Karman constant. Now, the simple-momentum-transport 
model used in Section 3.2 to derive the log law assumes a 
local mixing length that varies according to: 

e =K.V (18) 
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Fig 12. Mean-velocity profiles non-dimensionalized on inner variables. 
Channel flow data from Wei and Willmarth (1989). 
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This means that in the constant-Reynolds stress region, 

<r=e+ = Ky+ (19) 

Notice that C reaches its maximum value at the end of 
the constant-stress region, ie at (y/8) = 0.2, such that: 

^ / s ) m a x = «6>/s; top of log region = 0.082 (20) 

Thereafter t is a constant throughout the rest of the 
boundary layer. Although (I /5)max is independent of the 

Reynolds number, it is clear that t ^ is not a constant. In 

fact, £^. is a strong function of the Reynolds number for 

5+ < 103 (Bushnell et al, 1975). 

If the near-wall region within which f ^ i s first reached 
is simply modeled to be composed of Townsend's double-
cone eddies, it is then encouraging that the von Karman 
constant of 0.41 is within the value of the constant of 
proportionality for the upper limit of the vortex size, viz 2, 
The kinematic behavior supports the contention that K is 
independent of Reynolds number and type of flow (pipe, 
channel or boundary layer). 

5.3 The illusory asymptotic state 

While inner scaling appears to collapse wall-layer mean-
flow data onto a single curve regardless of the Reynolds 
number, the situation is not that simple in the outer layer. 
As discussed in Section 3, Coles (1956) proposed to repre­
sent the entire mean-velocity profile in any two-
dimensional turbulent boundary layer by a linear superposi­
tion of two universal functions, the law of the wall and the 
law of the wake. In fact, Coles suggested a simple extension 
of his empirical law to represent even yawed and three-di­
mensional flows. Recall Eq 15: 

U+ =f(y+) + (TI/KJ W(y/8) 

The first term on the right hand side is valid for any smooth 
wall-bounded flow, and available evidence appears to indi­
cate that the function/is independent of Reynolds number, 
pressure gradient, and freestream turbulence. This term 
supposedly represents all mixing processes in the wall layer 
governed primarily by viscosity. The wall constraint is felt 
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Fig 13. Reproduction of Coles' (1962) strength of the wake component in 
equilibrium turbulent boundary layers at low Reynolds numbers. 

mainly in the viscous sublayer, the buffer layer and the log­
arithmic portion of the velocity profile. For rough walls, 
particularly when the roughness is sufficiently pronounced, 
the viscous length-scale is simply replaced by the character­
istic roughness height. For both smooth and rough walls, the 
appropriate velocity scale is derived from the magnitude of 
the surface shear stress. 

The second term, representing turbulent mixing proc­
esses dominated by inertia, is the product of the universal 
wake function W(y/8) and the ratio of the profile parameter 
IT to the von Karman constant K. The parameter n depends 
on the pressure gradient, the freestream turbulence and 
whether the flow is internal or external, but is not directly 
affected by wall conditions such as roughness, etc. For a 
flat-plate boundary layer, the profile parameter increases 
with Reynolds number but presumably asymptotes to a 
constant value at high enough Re. This is illustrated in Fig 
13, from Coles (1962), depicting the change of the maxi­
mum deviation of the mean velocity from the logarithmic 
law, AIT, with Reynolds number. In here, the maximum 
deviation, or the strength of the wake component, is ex­
pressed in wall units and the Reynolds number is based on 
freestream velocity and momentum thickness. The maxi­
mum Reynolds number shown is 15,000. Since the maxi­
mum deviation occurs close to the edge of the boundary 
layer and since W(ylh) has been normalized such that W(l) 
= 2, the strength of the wake component is approximately 
related to the profile parameter by: 

ALT = 2 n/K (21) 

It is clear that the strength of the wake depends upon the 
somewhat arbitrary way in which the logarithmic portion of 
the velocity profile is fitted, ie on the particular values of K 
and B chosen. 

Figure 13 shows that the strength of the wake component 
reaches a constant value for Re9 > 6,000. Coles (1962) 
termed the flow at this high Reynolds number 
"equilibrium," which led to the wide spread perception that 
the flow becomes independent of Reynolds number beyond 
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Fig 14. Reproduction of Coles' (1962) strength of the wake component at 
large Reynolds numbers. 
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this value. Unfortunately, when the plot in Fig 13 is ex­
tended to larger values of Reynolds numbers, it becomes 
clear that the presumed asymptotic state is merely an illu­
sion. As shown in Fig 14, AIT starts decreasing again at 
about Ree > 15,000, although very slowly compared to the 
rise rate for Ree < 6,000. After excluding all data containing 
certain anomalies, Coles (1962) was puzzled by the persis­
tent change in behavior and the variation between data sets 
for Ree > 15,000. The drop can not be explained from ex­
perimental uncertainties such as those caused by probe cali­
bration problems, improper tripping devices, three-dimen­
sional effects, high levels of freestream turbulence and 
pressure-gradient effects, and Coles left the issue open. 

The rapid rise and the subsequent gradual fall of AC* 
with Ree appear to be genuine and have been confirmed in 
several other experiments as summarized by Mabey (1979). 
The maximum ALT', reached at about Ree = 6000, is 2.7 for 
subsonic flows (Smith and Walker, 1959) but is higher by 
30% or more for supersonic flows (Lee et al, 1962; Hopkins 

x (mm) 
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700 
1080 
1310 

Re„ 
Fig 15. Strength of the wake component versus Reynolds number on a 
semi-log plot. Subsonic data of Smith and Walker (1959) at four different 
downstream stations. Figure reproduced from Mabey (1979). 

W, = 3.6 

AU 

I Profiles without I 
1 wake component ' 

Fig 16. Strength of the wake component versus Reynolds number on a 
semi-log plot. Supersonic data of Mabey et al (1976) at six different mach 
numbers. Figure reproduced from Mabey (1979). 

et al, 1972; Mabey et al, 1976). 
Smith and Walker's (1959) subsonic data, shown 

previously in the top part of Fig 14, are replotted on a semi­
log scale in Fig 15, for four different measuring stations. 
The forward station, x = 400 mm, shows a different trend as 
compared to the three downstream locations. Using the two 
curves fitted to the data in Fig 15, Mabey (1979) analyzed 
the effects of the variation of the wake component with 
Reynolds number on skin-friction and total drag predic­
tions. These are important parameters when extrapolating 
model tests to actual vehicle configurations. The curve 
marked W, = 1.8 corresponds to a constant wake compo­
nent of 1.8 above Re9 = 5600, but falls to zero at Ree = 600. 
The second curve marked Wt = 2.8 peaks at Ree = 5600, but 
drops at higher and lower Reynolds numbers. Particularly at 
low Ree, the skin-friction computed from the first curve fits 
the law-of-the-wall estimates, while predictions based on 
the second curve fit the directly measured drag better. 

The supersonic data of Mabey et al (1976) are depicted 
in Fig 16, where there seems to be no significant variation 
with Mach number. Despite artificial tripping, the boundary 
layer was laminar or transitional for Re9 < 600, and no 
wake component can be extracted from the velocity pro­
files. As in the subsonic case, Mabey (1979) used the two 
fitted curves in Fig 16 to analyze the effects of the variation 
of the wake component with Reynolds number on skin-fric­
tion. 

The Reynolds number effect on the mean flow can also 
be verified independently from Clauser's shape parameter: 

8 

0 

dy 
O 

dy (22) 

where U(y) is the velocity profile and U0 is the velocity at 
the dege of the boundary layer, y = 5. Bandyopadhyay 
(1992) compiled the findings of several recent experiments 
to show the variation of G with Ree . The results are shown 
in Fig 17, and include the high-aspect ratio9 data of Anders 
(1989). The trend parallels that of AIT. The value of G first 
rises rapidly with Ree and then drops gradually. Figure 17 
also corrects the loose notion found in the literature that G 
varies between 6.5 and 7.5. 

5.4 Is self-preservation ever achieved? 

At approximately Ree > 15xl03, the gradual departure of 
A[/+ from the apparent low-Re9 asymptote suggests that 
some new effects are gradually appearing in the turbulence 
production process. A new, lower asymptote appears to 
have been reached when Re0 = 50,000, but the boundary 
layer might also continue to change indefinitely as the inner 
and outer scales are forever disparting. The paucity of high-
Reynolds number reliable data makes it difficult to make a 
definitive conclusion. 

Without definitive experiments at even higher Reynolds 
numbers, one can never be sure of the universality of the 
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defect law. Very few existing facilities can deliver the re­
quired ultra-high Reynolds number flows, while maintain­
ing relatively low Mach number (in the so-called low-
speed, high-Reynolds number tunnels) as to avoid the added 
complication of compressibility effects. The world's largest 
wind tunnel, the 24 m x 37 m Full-Scale Aerodynamics 
Facility at NASA Ames, is capable of generating a bound­
ary layer with a momentum-thickness Reynolds number as 
high as 3.7x10s (Saddoughi and Veeravalli, 1994). 

The largest available water tunnels and towing tanks can 
deliver momentum thickness Reynolds numbers of ap­
proximately 3xl04 and 9xl04, respectively (Fig 1). Cryo­
genic tunnels, for example the National Transonic Facility 
at NASA Langley, typically use nitrogen and run as high as 
Ree = 6xl04, but their Mach number is near one and are 
rather expensive as well as heavily scheduled (Bushnell and 
Greene, 1991). Tunnels using liquid helium I are an at­
tractive, low-cost alternative to the much larger nitrogen 
tunnels (Donnelly, 1991). Helium facilities can match the 
Reynolds numbers of the transonic wind tunnels but with 
essentially zero Mach number and much smaller sizes 
(eg, 1 cm x 1 cm test section). Instrumenting the smaller 
facilities with high-resolution velocity or pressure probes is 
at present problematic, although the rapidly developing mi-
crofabrication technology has the potential for producing 
inexpensive megahertz-frequency and micron-size sensors 
(see, for example, LOfdahl et al, 1989; 1991; 1992). 

A commonly accessible large-scale, high-Reynolds 

number facility is the atmospheric boundary layer. The flow 
is virtually incompressible and the momentum-thickness 
Reynolds number in the atmosphere can be as much as four 
orders of magnitude higher than that in typical laboratory 
experiments. Unfortunately, such a natural laboratory has 
several faults. Firstly, the "wall" in this case is almost al­
ways rough and direct comparison to the canonical bound­
ary layer is difficult. Secondly, the atmospheric experi­
ments are not well controlled, the flow conditions are nei­
ther precisely repeatable nor documentable to the needed 
detail (see however the recent thesis by Kailasnath, 1993, 
who was able to carry out useful comparison between low-
Reynolds number laboratory data and high-Reynolds num­
ber atmospheric data). 

The so-called super-pipe facility is currently being con­
structed at Princeton University (AJ Smits, private com­
munications). The pipe has a diameter of 12.7 cm and a 
length-to-diameter ratio of 200. When completed, this high-
pressure-air (200 atm.) pipe flow will provide a very high 
Reynolds number of up to Rea = 2.3x107 at a reasonably 
large scale and low Mach number, and hopefully will help 
in answering some of the questions raised in the present re­
view. 

For the present at least, it is simply not known if the 
mean flow in a wall-bounded flow ever achieves true self-
preservation. As will be shown in Section 6, the situation is 
less clear for higher-order statistics. 
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Fig 17. Low-Reynolds number effects on Clauser's shape parameter (from Bandyopadhyay, 1992). 
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5.5 Alternatives to the logarithmic profile 

Despite copious evidence for the existence of the log law, 
the whole scenario leading to it has been questioned (see 
the references cited in Section 3.2). From a purely practical 
point of view, a portion of the streamwise mean-velocity 
profile could equally well fit either a logarithmic relation or 
a power law. If the mean-velocity profile for a pipe flow (or 
boundary layer) is to be fitted with a power law of the form: 

i 

iH«J (23) 

the value of the exponent {I In) will decrease as the velocity 
profile becomes fuller. In other words, /; increases as H de­
creases and Re increases. For example, the smooth-pipe-
flow data of Nikuradse (1932) indicate that n changes from 
6 to 10 as the Reynolds number varies in the range of Rea = 
2.53xl03-1.85xl06 (Schlichting, 1979). 

Sreenivasan (1989) argues that although the power law 
used by engineers to describe the mean-velocity profile has 
been discredited by scientists since Millikan (1939) derived 
the logarithmic law from asymptotic arguments, the basis 
for the power law is a priori as sound as that for the log 
law, particularly at low Reynolds numbers (see also 
Barenblatt, 1979; 1993; Barenblatt and Prostokishin, 1993). 
The behavior of the exponent {IIn ) as Rea -> oo is of 
particular interest. If it tends to zero, the log law is re­
covered. If, on the other hand, the limiting value of the 
exponent is a non-zero constant, the log law does not 
strictly hold. This implies that an inertial sublayer is lacking 
and, therefore, that viscous effects persist even at infinitely 
large Reynolds number. Such a scenario is consistent with 
the suggestion by Long and Chen (1981) that the inner flow 
is the outcome of an interplay between wall effects and 
outer effects. According to them, it is strange that the 
matched layer between one characterized by inertia and 
another characterized by viscosity depends only on inertia. 
Long and Chen suggest that a "mesolayer" intrudes between 
the inner and outer regions preventing the overlap assumed 
in the derivation of the classical logarithmic velocity 
profile. Unfortunately, existing experimental or numerical 
mean-velocity data cannot readily be used to explore this 
important issue since the difference between a logarithmic 
relation and a power law with a large but finite n is 
imperceptible (see Kailasnath, 1993, for a comprehensive 
review of available data). 

George et al (1992; 1993; 1994) provide the most serious 
challenge to the validity of the log law for external wall-
bounded flows. They assert that boundary layer data taken 
at different Reynolds numbers collapse in the log region 
only if the shear stress is calculated from a method (ie the 
Clauser's method) which forces it to by assuming such a 
layer exists. Such superficial collapse compromises the 
collapse in the viscous sublayer where no adjustable con­
stants or Reynolds number dependence should exist. As an 
alternative, George et al (1993) used measured shear stress 
to normalize the data of Purtell et al (1981), and showed 

that the profiles collapse well very close to the wall but not 
in the log region where clearly discernible Reynolds num­
ber dependence is depicted. To remedy the situation, 
George et al (1993) propose matching a new velocity-defect 
law with explicit Reynolds number dependence and the 
traditional law of the wall. The result in the matched region 
is a power-law velocity profile of the form: 

where the coefficients Be B0, C{, C0 and the exponent n are 
Reynolds number dependent, but all are asymptotically 
constant. In a subsequent paper, George et al (1994) have 
shown that the additive coefficients Bf and Ba are identically 
zero. Using Eqs 24 and 25, the friction coefficient is readily 
expressed as the Reynolds number to the power -2«/(l + n). 

George et al (1994) assert that their approach removes 
many of the unsatisfying features of the classical Millikan's 
(1939) theory. Furthermore, they argue that a clear distinc­
tion should be made between internal and external wall-
bounded flows. For fully-developed pipe and channel flows, 
the streamwise homogeneity insures that the pressure gradi­
ent and wall-shear stress are not independent, and thus Ux is 
the correct scaling velocity for the entire shear layer 
including the core region. This results in a log law although 
the flow has no constant-stress layer. The growing, in-
homogeneous boundary layer, in contrast, is governed by a 
power law even though it does, at least for zero pressure 
gradient and high Re, have a constant-stress layer. The 
matched region of a boundary layer retains a dependence on 
streamwise distance, and hence never becomes Reynolds 
number independent. The same arguments presented here 
for the mean flow could be extended to higher-order 
statistics. 

The difference in the inner region between flat-plate 
boundary layers and fully-developed channel flows ex­
plored above might have serious implications on the prin­
ciple and use of the Preston tube, a device widely used for 
measuring the local mean friction-coefficient. Such gauge is 
commonly calibrated in a pipe flow and relies on the uni­
versality of the inner layer to compute the skin friction in a 
flat-plate boundary layer. Such extrapolation is thus ques­
tionable, and direct measurements of wall-shear stress are 
clearly preferred. 

George and Castillo (1993) have recently extended the 
new scaling law described earlier for the flat-plate flow to 
boundary layers with pressure gradient. Inclusion of rough­
ness or compressibility effects could proceed along similar 
attempts made in the past for the classical theory (Hama, 
1954; Coles, 1962). 

The fresh look at the turbulent boundary layer by George 
and his colleagues is intriguing and deserves further scru-
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tiny. Independent confirmation of their claims is needed, 
and carefully controlled boundary layer experiments over a 
wide range of Reynolds number would be most useful. 
Low-Reynolds number experiments in which the linear 
region is resolved and the wall-shear stress is measured 
directly would be particularly valuable. If validated, their 
new theory indicates that the boundary layer is governed by 
a different scaling law than commonly believed. Explicit, 
albeit weak, Reynolds number dependence is shown for the 
mean velocity profile all the way down to the edge of the 
viscous sublayer. The matched region retains a dependence 
on streamwise distance, and hence Reynolds number effects 
will always persist for all turbulence quantities. 

6. HIGHER-ORDER STATISTICS 

Compared to the mean flow, higher-order statistical quanti­
ties are more difficult to measure, and the issue of Reynolds 
number effects is murkier. For quantities such as root-
mean-square, Reynolds stress, skewness and spectrum, the 
issues of spatial as well as temporal probe resolutions, 
three-dimensional effects and boundary-layer tripping de­
vices become much more critical. In contrast to mean flow, 
reliable data for higher-order statistics are scarce. 

A measurement probe essentially integrates the signal 
over its active sensing area or volume. This means that ve­
locity or pressure fluctuations having scales smaller than 
the sensor size are attenuated by the averaging process, and 
the measured root-mean-square of the fluctuations, for ex­
ample, is smaller than the true value. Several studies have 
shown the importance of probe size in the detection of 
small-scale structures in the near-wall region (for example, 
Willmarth and Bogar, 1977; Schewe, 1983; Johansson and 
Alfredsson, 1983; Blackwelder and Haritonidis, 1983; 
Luchik and Tiederman, 1986; Karlsson and Johansson, 
1986; Ligrani and Bradshaw, 1987; Wei and Willmarth, 
1989; Lofdahl et al, 1992). As a rule of thumb, probe length 
much larger than the viscous sublayer thickness is not ac­
ceptable for accurately measuring turbulence levels and 
spectra anywhere across the boundary layer, and even 
smaller sensing elements are required to resolve dynamical 
events within the sublayer itself. 

The issue of sufficient probe resolution is particularly 
acute when studying Reynolds number effects. A probe that 
provides accurate measurements at low Re might give erro­
neous results when the Reynolds number is increased and 
the scales to be resolved become smaller relative to the 
probe size. The probe resolution should be expressed in 

wall units, and as mentioned above i+ should not be much 
larger than 5, where £ is the probe length. 

The classic idea of inner scaling is that any turbulence 
quantity measured at different Reynolds numbers and in dif­
ferent facilities will collapse, at least in the inner layer, to a 
single universal profile when non-dimensionalized using 
inner-layer variables. In contrast to mean-velocity profiles, 
higher-order statistics do not in general scale with wall-
layer variables even deep inside the inner layer. In the fol­
lowing five subsections, we review Reynolds number ef-
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fects on the root-mean-square values of the velocity fluc­
tuations, Reynolds stress, spectra, skewness and flatness 
factors, and rms and spectrum of the wall-pressure fluctua­
tions. 

6.1 Root-mean-square velocity fluctuations 

The intensity of turbulent fluctuations is defined by its root-
mean-square value. The streamwise velocity fluctuations 
are more readily measured using, for example, a single hot­
wire probe or a two-beam laser Doppler velocimeter. 
Measuring the other two velocity components, in contrast, 
requires two hot wires either in an X-array or a V-array or 
four intersecting laser beams. Especially very close to the 
wall, few reliable measurements of the normal velocity 
components are reported in the literature, and even fewer 
are available for the spanwise component. A notable ex­
ception is the oil-channel data reported by Kreplin and 
Eckelman (1979), who measured all three velocity compo­
nents inside the viscous sublayer. In here, boundary layer 
data for both low and high Reynolds numbers are presented 
followed by channel and pipe flow data. 

Figure 18 shows the variation of the normal distribution 
of turbulence intensity in wall variables with Reynolds 
number. Measurements of the streamwise velocity compo­
nent were conducted by Purtell et al (1981) in a low-
Reynolds number, flat-plate boundary layer. Four Reynolds 
numbers based on momentum thickness are presented in the 
figure, ranging from Re9 = 465 to 5100. It is clear that 
Reynolds number effects penetrate into the boundary layer 
much deeper in terms of the turbulence intensity than it 
does for the mean velocity. Approximate similarity in wall 
units is maintained only out to v+ « 15, compared with 
mean velocity which is similar throughout the entire inner 
layer. Close inspection of the figure reveals that even in the 
viscous region itself, some weak dependence on Reynolds 
number is observed in the rms value of the streamwise ve­
locity fluctuations, as seen at the lowest Reynolds number 
of Re9 = 465. Purtell et al attributed the systematic decrease 
in u' across most of the boundary layer to the suppression 
of all but the largest turbulence eddies as the Reynolds 
number is reduced. 
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Fig 18. Variation of the distribution of turbulence intensity in wall variables 
with Reynolds number. Boundary layer data from Purtell et al (1981). 
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Reynolds number can of course be changed either by 
varying the freestream velocity at a fixed streamwise loca­
tion or by holding the tunnel speed constant and conducting 
the measurements at increasing downstream locations. To 
check the state of development of the flow, Purtell et al 
(1981) measured, for a fixed freestream velocity, the mean-
velocity profiles at four downstream distances from the 
tripping device. At the station closest to the distributed 
roughness, they report under-development in the outer re­
gion of the mean flow, but an undistorted logarithmic re­
gion that produces friction velocity values in agreement 
with directly measured £/T-values computed from near-wall 
measurements of dU/dy. The same trends were observed at 
higher Reynolds numbers by Klebanoff and Diehl (1951). 

When normalized with the freestream velocity, u' also 
shows distortion in the outer region for measurements not 
sufficiently far downstream of the tripping device. How­
ever, as shown in Fig 19, the rms data plotted in inner 
variables at a freestream velocity of 2.3 m/s and four 
downstream stations x = 91, 122, 152 and 183 cm, exhibit 
such a strong Reynolds number dependence in the outer 
layer that the distortion mentioned above is obscured. Close 
inspection of Fig 19 shows a small but systematic Reynolds 
number effect even below y+ = 10. Barring the first meas­
urement station (x = 91 cm), which is non-typical due to its 

close proximity to the tripping device, at a given y+, {/^in­
creases with x, that is with Ree. 

One might argue that the strong Reynolds number effects 
shown above will eventually subside at sufficiently high 
Reynolds number. This is not the case, at least up to Ree of 
15,406, as shown in Andreopoulos et aJ's (1984) flat-plate 
data depicted in Fig 20a. The rms-values of the longitudinal 
velocity fluctuations show strong Reynolds number depend­
ence all the way to the edge of the viscous sublayer. In the 
buffer layer, u'/Uz decreases as the Reynolds number in­
creases from 3624 to 12,436, thereafter reaching what 
seems to be a constant value. An opposite trend, that con­
tinues for all four Reynolds numbers, is observed in the 
logarithmic and wake regions. Andreopoulos et al (1984) 
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Fig 19. Distribution of turbulence intensity in wall variables at four 
different downstream locations. Flat-plate boundary layer at Um = 2.3 m/s. 

(from Purtell era/, 1981). 

indicated that the behavior of their w'-data in the buffer re­
gion is in general agreement with the channel flow results 
of Laufer (1951), Comte-Bellot (1965) andZaric (1972). 

Andreopoulos et al (1984) were able to measure the 
normal velocity component only at the lowest Reynolds 
number, Ree = 3620, as shown in Fig 20b. The weak second 
peak in W/Ux appearing at y+ = 4 seems to be unique to this 
particular experiment, but the authors do not comment on 
this. Reliable u'- measurements could not be obtained by 
Andreopoulos et al for higher Reynolds numbers due to 
limitations of the applicable velocity range of their triple-
wire sensor. 

The effect of Reynolds number on the inner-layer turbu­
lence in boundary layers is summarized in Fig 21, adapted 
by Bandyopadhyay (1991) from several different experi­
ments. The peak value of //-turbulence intensity, which oc­
curs at 12 <y+ < 15, is plotted normalized by wall variables 
versus the logarithm of Ree. In Ueda and Hinze's (1975) ex­
periment, the freestream turbulence is 0.03%, hot wire (+ is 
between 2.4 and 6.7, and the measurements have been car­
ried out at 3.4 m downstream of a trip wire. In Erm et afs 

Fig 20. Normal profiles of rms streamwise velocity, rms normal velocity, 
and Reynolds stress (from Andreopoulos et al, 1984): (a) Root-mean-square 
values of longitudinal velocity fluctuations at four different Reynolds 
numbers; (b) Root-mean-square values of normal velocity fluctuations at 
Reg = 3620; (c) Measured and computed Reynolds stress distributions at 

Reft = 3664. 
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(1987) experiment, t < 5 and the measurements have been 
carried out 0.18 to 1.94 m downstream of stimulator pins. 
Two sets of Purtell et ah (1981) experiments are included 
where No. 4 floor sanding paper has been used to trip the 
boundary layer, Tu = 0.05%, and 0.8 < t < 3. The Re9 = 
465 data point is from a station 1.07 m downstream of a 15-
cm long fetch of sand paper. The higher data points are 
from runs where the sand roughness extended over 61 cm 
and the measurements were carried out 2.69 m downstream. 
Note the higher value of the maximum turbulence intensity 
at the lowest Ree of the second data set. In Andreopoulos et 
afs (1984) experiment, 1.7 < t ^ 6.4, and the 
measurements were carried out 3 to 4 m downstream of a 1 
cm-long sandpaper trip (grit height« 1 mm). 

In Fig 21, Tu or t does not explain the variation be­
tween the different facilities. Despite the scatter in the dif­
ferent data sets, the general trend is for increasing values of 
the normalized peak value of urms with Reynolds number, at 
least initially. The paucity of data at Re6 > 6000 precludes 
making any definitive statement regarding the asymptotic 
behavior of u^m. Since Re9 represents outer layer scales, the 
figure shows that the outer layer affects the inner-layer u-
turbulence. The outer-layer effect seems to be facility de­
pendent even at Re9 ~ 5xl03 and 3.4 m from the trip. The 
stronger trip effects on turbulence at the higher Reynolds 
number is surprising, although as will be shown in Section 
8.3.2, the mean flow also exhibits a similar behavior. 

In Fig 21, in three experiments, the maximum value of 
urmJUx first increases rapidly (above 2.8) with Reynolds 
number before dropping slowly. This behavior is similar to 
the high Reynolds number mean flow behavior downstream 
of a trip. The reason for this is not understood; but like it is 
known for the effect of freestream turbulence, length scales 
0[8] introduced into the outer layer by the trips could be 
involved. In that case, it is interesting that certain transition 
devices could affect the turbulence in a boundary layer at 
high Reynolds numbers even beyond 855. Three data points 
from the direct numerical simulation of Spalart (1986) are 
included in the figure and they indicate similar trends to 
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Fig 21. Peak value of u-turbulenoe intensity in turbulent boundary layers. 
The plot, from four different experiments and a single direct numerical 
simulation, demonstrates the effect of outer layer scales on inner-layer 
turbulence (from Bandyopadhyay, 1991). 

those of the low-Reynolds number experiments. 
Relatively more data are available for two-dimensional 

channel flows. Figure 22 depicts Reynolds number effects 
on the normal profiles of the streamwise turbulence inten­
sity in four different channel flows. Laufer's (1951) experi­
ments were conducted at three Reynolds numbers, based on 
channel half-width and centerline velocity, of Rea = 12,300; 
30,800; and 61,600. Comte-Bellot (1965) covered the 
higher range of Refl = 57,000 and 230,000. Kreplin and 
Eckelmann's (1979) experiments were conducted at Rea = 
3850, Johansson and Alfredsson (1982) provided data for 
Rea = 6900; 17,300; and 24,450. 

Probe resolution problems appear to exist in both 
Laufer's and Comte-Bellot's high-Reynolds number data. In 
the former experiment, the hot-wire length increased from 3 
wall units at the lowest Reynolds number investigated to 13 
wall units at the highest Reynolds number, a fourfold loss in 
spatial resolution. Laufer (1951) observed (erroneously) a 
corresponding decrease in the peak value of u'/Ux with in­
creasing Reynolds number. Comte-Bellot's (1965) probe 
length increased from 13 to 36 viscous lengths as Rea in­
creased from 57,000 to 230,000. Correspondingly, she also 
observed (erroneously) a decrease in the peak value of the 
nondimensional streamwise turbulence intensity from 2.85 
to 2.5. High-quality turbulence data obtained using suffi­
ciently small probes and facilities void of significant trip-
memory effects are clearly lacking. In any case, the data in 
Fig 22 indicate that the turbulence intensity profiles do not 
collapse even deep into the inner layer. 

Similar trends are observed in the rms-values of the ve­
locity fluctuations normal to the wall. Figure 23 depicts the 
u' -profiles taken from four different facilities. Laufer's 
(1951) experiments were conducted at Rea = 12,300; 
30,800; and 61,600. Comte-Bellot (1965) covered the 
higher values of Rea = 57,000 and 230,000. Eckelmann 
(1974) provided data for Rea = 2800 and 4100. Alfredsson 
and Johansson's (1984) experiments were conducted at Rea 

= 7500. The peak u' is lower than that for the streamwise 
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Fig 22. Streamwise turbulence intensity profiles non-dimensionalized with 
respect to inner variables. Channel flow data from four different 
experiments, compiled by Wei and Willmarth (1989). 
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fluctuations and occurs further away from the wall, Validity 
of inner scaling deep into the viscous region can not be as­
certained from this figure because of the scarcity of data for 
y+ < 30. 

In view of the poor quality of most of the data in Figs 22 
and 23, Wei and Willmarth (1989) systematically investi­
gated the Reynolds number effects using a unique high-
resolution, two-component laser-Doppler anemometer. To 
reduce the amount of ambient light in the vicinity of the 
measuring volume and thus to improve the signal-to-noise-
ratio of the LDA system, four laser beams were entered and 
exited into the test section via two narrow slits located at 
the two side walls of a two-dimensional water channel. 
Both slots were covered with an extremely thin (17 mi­
crons) window of heat shrinking Mylar film, which virtually 
eliminated optical refraction by the window. The laser 
beams intersected at a single point away from the wall, and 
the effective probe length ranged from 0.66 to 6.43 wall 
units as the Reynolds number was varied in the range of Refl 
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Fig 23. Normal turbulence intensity profiles non-dimensionalized with 
respect to inner variables. Channel flow data from four different 
experiments, complied by Wei and Willmarth (1989). 

= 3000-40,000. Beam refraction in the path between the la­
ser source and the measuring station was minimized using a 
specially designed optical head. 

The combination of high spatial resolution and high data 
rates enabled Wei and Willmarth (1989) to reconstruct ac­
curate time-dependent velocity traces. Their results for the 
streamwise and normal turbulence intensities are presented 
in Figs 24 and 25. In the former figure, «' and u' are nondi-
mensionalized with the local mean velocity U, while U is 
used as a velocity scale in Fig 25. In Fig 24, the intensity of 
turbulent fluctuations is described relative to the square root 
of the mean kinetic energy per unit mass at a given distance 
from the wall. The apparent increase in v'/U as the surface 
of the channel is approached violates the continuity equa­
tion and is probably caused by reduced measurement reso­
lution very close to the wall. 

The inner variable plot in Fig 25 allows some instructive 
comparison to other data in the literature (Figs 22 and 23). 
Wei and Willmarth (1989) ascribe the slight disagreement 
between the different data sets to a decreased spatial reso­
lution of the hot wires used by Laufer (1951), Comte-Bellot 
(1965) and Johansson and Alfredsson (1982) at high 
Reynolds numbers. But, even in the newer data set, the 
fluctuating turbulence quantities do not scale with wall 
variables even at as close as 10 viscous lengths from the 
wall. In fact, inner scaling does not seem to apply to u' 
across the entire portion of the viscous region where meas­
urements are available. 

More recently, Harder and Tiederman (1991) have stud­
ied the behavior of the rms of the fluctuating streamwise 
and normal velocities as a function of distance from the 
wall of a two-dimensional water channel. Their results are 
depicted in Fig 26 for Refl = 9019; 12,663; 19,013; and 
21,650. In here, ujm peaks at 2.76 for a v+ * 15, while u^ms 

peaks at a y+ ~ 75 with a value of 1.12. The data are gen­
erally 7% lower than those of Walker and Tiederman's 
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Fig 24. Profiles of turbulence intensity in streamwise direction (open 
points) and direction normal to wall (solid points), non-dimensionalized on 
local mean velocity. Channel flow data of Wei and Willmarth (1989). 

Fig 25. Profiles of turbulence intensity in streamwise direction (open 
points) and direction normal to wall (solid points), non-dimensionalized on 
inner variables.! Channel flow data of Wei and Willmarth (1989). 

Downloaded From: http://appliedmechanicsreviews.asmedigitalcollection.asme.org/ on 09/20/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Appl Mech Rev vol 47, no 8, August 1994 Gad-el-Hak and Bandyopadhyay: Wall-bounded turbulent flows 329 

(1990) experiments indicated by the solid lines in Fig 26, 
but 7% higher than the experimental values obtained by 
Hussain and Reynolds (1975) or the numerical simulation 
results of Kim et al (1987). 

Harder and Tiederman (1991) assert that, in dis­
agreement with Wei and Willmarth (1989), inner scaling 
does correlate the data for all Reynolds number in the wall 
region (y+ < 50). However, in the present authors' opinion, 
the range of Reynolds numbers investigated by Harder and 
Tiederman (1990) is too narrow to make such a claim. The 
dependence on Reynolds number in the inner region is a 
rather weak one, and a substantial change in Rea is needed 
to assure a measurable effect. Typically the turbulence in­
tensity changes by only a few percentage points when the 
Reynolds number changes by 100%. The ratio of the largest 
to smallest Rea in Wei and Willmarth's study is about 13, 
while it is only 2.4 in Harder and Tiederman's. 

Additional support for Wei and Willmarth's (1989) basic 
conclusion that turbulence quantities in the near-wall region 
do not scale on wall variables comes from the boundary 
layer experiments of Purtell e? <?/ (1981) and Andreopoulous 
et al (1984), referenced earlier in this section, as well as 
from the physical and numerical channel-flow experiments 
conducted by Antonia et al (1992) and the flat-plate ex­
periments of Murlis et al (1982), Wark and Nagib (1991) 
and Naguib and Wark (1992; 1994). It is, of course, con­
ceivable that wall-layer scaling might apply over the entire 
inner layer provided that the Reynolds number is high 
enough, but at the moment at least such ultra-high-Reynolds 
number experiments cannot be conducted with sufficient 
probe resolution. 

The effect of Reynolds number on the inner-layer turbu­
lence in channel flows is summarized in Fig 27, compiled 
by Bandyopadhyay (1991). The peak value of M-turbulence 
intensity, which occurs at 12 < y+ < 15, is plotted normal­
ized by wall variables. The data in the figure are compiled 
from the experiments conducted by Laufer (1951), Grass 
(1971), Eckelman (1974), Johansson and Alfredsson (1982), 
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and Wei and Willmarth (1989) in five different facilities. 
For all the data points shown in Fig 27, probe resolution is 
better than 7 wall units. The data follows the general trends 
reported by Wei and Willmarth (1989), and the solid line in 
the figure is a least-square fit to all the points. The peak 
value in channel flows seems to be increasing monotoni-
cally with Reynolds number, at least up to Rea = 23,000. 
Confidence in the data in this figure is, in general, higher 
than that for the boundary layer results summarized in Fig 
21, There, post-transition memory effects may have played 
a role, that remains ill understood, in the observed trends. 

Perry and Abell (1975) provide pipe flow data for the 
Reynolds number range of Rea = 40,000-130,000. An ex­
ample of their data is shown in Fig 28. The streamwise 
turbulence intensity in wall units is plotted versus y+ for 
four different Reynolds numbers. As a consequence of the 
existence of a constant-stress regime, a distinct region of 
constant turbulence level appears for each of the four. 
Reynolds numbers investigated [see Section 3.2 and Eq 9]. 
Although scaling with inner variables appears to collapse 
the pipe-flow data in the inner region, in contrary to the 
boundary-layer and channel-flow data discussed earlier, it 
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Fig 27. Peak value of w-turbulence intensity in two-dimensional channel 
flows. The plot, from five different experiments, demonstrates the effect of 
outer layer scales on inner-layer turbulence. Solid line represents the mean 
trend (from Bandyopadhyay, 1991). 
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Fig 26. Profiles of turbulence intensity in streamwise direction and direction 
normal to wall, non-dimensionalized on inner variables. Channel flow data 
of Harder and Tiederman (1991). Solid lines in figure are best fit to Walker 
and Tiederman's (1990) data. 

Fig 28. Streamwise turbulence intensity profiles non-dimensionalized with 
respect to inner variables. High-Reynolds number pipe-flow experiments of 
Perry and Abell (1975). 
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should be noted that the data in Fig 28 have been obtained 
with a hot-wire whose length has ranged from 35 to 100 
wall units as the Reynolds number changed in the indicated 
range. According to the criterion that have been established 
earlier in this paper, Perry and Abell's probe resolution is 
insufficient to prove or refute the existence of similarity 
with inner variables. 

Coles (1978) summarized the results of 50 different ex­
periments conducted in circular pipes, rectangular channels 
and zero-pressure-gradient boundary layers. He does remark 
that not all experiments are equally reliable. Nevertheless, 
Fig 3 of Coles' paper indicates that, when the ratio of outer 
to inner length-scales, 5+, increases from 100 to 10,000, the 
value of the rms streamwise velocity fluctuations measured 
at y+ = 50 and normalized with the corresponding peak 
value measured at y+ « 15 systematically increases from 
about 0.6 to 0.9. This result is consistent with a non-negli­
gible Reynolds number effect on the turbulence just outside 
the viscous region. 

6.2 Reynolds stress 

6.2.1 Reynolds number effects 

Turbulence shear stress, or Reynolds stress -puu, is the 
most important dynamical quantity affecting the mean mo­
tion. The major portion of the momentum transported in a 
two-dimensional turbulent wall-bounded flow is accom­
plished by -uo. Therefore, modeling the behavior of 
Reynolds stress is one of the primary objectives of various 
prediction schemes. Simultaneous measurements of the 
streamwise and normal velocity fluctuations are required to 
compute the Reynolds stress at any particular point in the 
flow field. Provided this is done with high fidelity in the 
low- to moderate-Reynolds number laboratory experiments, 
extrapolation to the higher-Reynolds number field condi­
tions is only possible if the Reynolds number effects are 
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Fig 29. Reynolds stress profiles in wall units versus distance from wall 
normalized with channel half-width. Channel flow data from four different 
experiments, compiled by Wei and Willmarth (1989). Solid line represents 
total shear stress profile. 
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well understood. In this subsection, we review those effects 
in boundary layers, channels and pipes. 

In boundary layers, the normalized cross correlation -uv 
is plotted in Fig 20c, for a single Reynolds number of Re9 = 
3664. Again, Andreopoulos et al (1984) were unable to 
measure the Reynolds stress reliably at higher Reynolds 
numbers due to limitations of the applicable velocity range 
of their triple wire probe. The directly measured turbulence 
shear stress is on the average 10% smaller than the theoreti­
cal distribution deduced from the momentum balance and 
mean flow data and shown by the open symbols in Fig 20c. 

More data are available for two-dimensional channel 
flows. The (kinematic) Reynolds stress normalized with the 
friction velocity is plotted versus the distance normal to the 
wall normalized with the channel half-width in Figs 29 and 
30. In both figures, the data points are directly computed by 
averaging the product of the measured u- and u-velocity 
fluctuations, and the solid line represents the theoretical to­
tal shear stress profile. In Fig 29, data from four different 
experiments are presented. Eckelmann (1974), using an oil 
channel, covered the low Reynolds numbers of 2800 and 
4100. Alfredsson and Johansson (1984) conducted their ex­
periment at Rea = 7500, while Kastrinakis and Eckelmann 
(1983) conducted theirs at Rea =12,600. Comte-Bellot 
(1965) covered the higher range of Reynolds number of 
57,000 and 230,000. 

The data of Wei and Willmarth (1989) covered the 
Reynolds number range of 2970 to 39,582, and are repro­
duced in the linear plot shown in Fig 30. Their high-resolu­
tion LDA allows measurements very close to the wall 
where the Reynolds stress is decreasing. The maxima of the 
non-dimensional turbulence shear stress profiles increase in 
magnitude and are closer to the wall as the Reynolds num­
ber increases. 

The same data above are plotted versus y+ in Fig 31. 
Here, the semi-log plot allows closer inspection of the near-

Fig 30. Reynolds stress profiles in wall units versus distance from wall 
normalized with channel half-width. Channel flow data of Wei and 
Willmarth (1989) at four different Reynolds numbers. Solid line represents 
total shear stress profile. 
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wall region, and Reynolds number effects are demonstrated 
more clearly. The maximum value of the normalized turbu­
lence shear stress is not the same for each profile, indicating 
the lack of inner scaling in the Reynolds number range in­
vestigated. When expressed in wall units, the location of 
peak Reynolds stress moves away from the wall as the 
Reynolds number increases. 

One advantage of investigating fully-developed pipe or 
channel flows is the ability to compare measurements with 
the computed Reynolds stress using the mean-velocity 
profile and pressure gradient, two quantities which are eas­
ier to measure. This has the advantage of being able to 
check the accuracy of the directly measured Reynolds 
stress, especially near the wall where probe resolution 
problems are particularly acute. In a fully-developed chan­
nel or pipe flow, the average normal and spanwise veloci­
ties vanish, there are no mean longitudinal velocity or 
Reynolds stress variations in the streamwise and spanwise 
directions, and the pressure gradient is a constant. The 
longitudinal momentum equation could then be integrated 
to give an exact relation between the Reynolds stress and 
mean-velocity distribution: 

-uo = - v (dU/dy) + U? (1 -jva) (26) 

where U(y) is the streamwise mean-velocity distribution 
and a is the channel half-width or pipe radius. The friction 
velocity, or the slope of the velocity profile at the wall, is 
related to the constant pressure gradient through: 

U2 = v (dU/dy) = - (a/p) (dP/dx) (27) 

where P is the static pressure and p and v are the fluid 
density and kinematic viscosity, respectively. In wall units 
the momentum balance Eq 26 reads: 

-wu = - (dU+/dy+) + (1 -y+/a+) (28) 

Wei and Willmarth (1989) used Eq 28 to compute the 
Reynolds stress profiles shown by the solid lines in Fig 31. 
Again, the non-dimensional profiles at different Reynolds 
numbers do not collapse in the outer and logarithmic re­
gions and even well into the viscous region. Except very 

tf 

close to the wall, the agreement between the directly meas­
ured Reynolds stress and that computed from the measured 
mean velocity and pressure gradient is very good, and at­
tests to the accuracy of the instantaneous velocity traces re­
constructed, filtered and smoothed from the Doppler burst 
detector and processor signals. Wei and Willmarth specu­
late that the divergence between the directly measured and 
computed Reynolds stresses is due to insufficient spatial 
and temporal resolution in the direct LDA measurement 
very close to the wall. 

The Reynolds stress profiles measured in a water channel 
by Harder and Tiederman (1991) are reproduced, non-di-
mensionalized with inner variables, in Fig 32. The range of 
Reynolds numbers investigated, Rea = 9019 to 21,650, is 
narrower than that studied by Wei and Willmarth (1989). 
Not surprisingly, then, Harder and Tiederman assert that, 
for/1' < 50, inner scaling correlates their data for all four 
Reynolds numbers. 

Wei and Willmarth (1989) also computed the turbulence 
kinetic energy production using both the directly measured 
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Fig 32. Reynolds stress profiles non-dimensionalized on inner variables. 
Channel flow data of Harder and Tiederman (1991) at four different 
Reynolds numbers. 
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Fig 31. Reynolds stress profiles non-dimensionalized on inner variables. 
Channel flow data of Wei and Willmarth (1989) at four different Reynolds 
numbers. Solid line represents momentum balance calculations. 

Fig 33. Turbulence kinetic energy production profiles. Channel flow data of 
Wei and Willmarth (1989) at four different Reynolds numbers. Solid lines 
represent momentum balance calculations. 
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Reynolds stress and the momentum balance equation. The 
profiles for four different Reynolds numbers are shown non-
dimensionalized with inner variables in Fig 33. Excepting 
very close to the wall, the two methods of computing 
-mJ (dU/dy) agree within 10%. Neither method leads to a 
profile collapse even in the viscous region. The maximum 
value of kinetic energy production obtained from the 
momentum balance increases with Reynolds number. .The 
data point nearest to the wall measured at Rea = 22,776 
appears to be in error. Interestingly, while the position of 
peak Reynolds stress, expressed in wall units, moves away 
from the wall as the Reynolds number increases (Fig 31), 
the peak turbulence production seems to be fixed at y+ « 
12-15. This point will be revisited later in this section and 
once more in Section 7. 

The measurements of mean velocity and pressure drop in 
the smooth-pipe-flow experiments of Nikuradse (1932) and 
Laufer (1954) were used to compute the Reynolds stress 
profiles shown previously in Fig 5. The Reynolds number in 
that figure, Re* = UT a /v , is the ratio of the pipe radius to 
the viscous length-scale, and varies over the wide range of 
140-55,400. A constant-turbulent-shear-stress region is 
clear at the highest Reynolds number. As in the channel 
flows, the peak value of normalized Reynolds stress in­
creases and its location, relative to the viscous length-scale, 
moves away from the wall as the Reynolds number in­
creases. 
6.2.2 Peak location 
Sreenivasan (1989) analyzed several different wall-bounded 
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Fig 34. Location of peak Reynolds stress as a function of Reynolds number. 
Data compiled by Sreenivasan (1988) from various wall-bounded flow 
experiments. Solid lines are least-square fit: (a) Directly measured Reynolds 
stress; (b) Computed from measured mean velocity. The lowermost two data 
points correspond to the critical layer position in typical transitional flows. 

flow experiments. The distance from the wall, expressed in 
inner variables, where the streamwise turbulence intensity 
peaks appears to be independent of Reynolds number (Fig 
16 of his paper). In contrast, the location where the largest 
normal fluctuations occur is a strong function of Reynolds 
number (Fig 17 of his paper): 

Lv+L<-max = [R<n' *10.75 (29) 

where Re* is the pipe radius or boundary layer thickness in 
wall units. Available data on the spanwise intensity are 
scarce and no conclusion can be reached on the scaling of 
its peak position. For the total turbulence kinetic energy, 
however, the position of its peak does scale on wall vari­
ables, much the same as u'. This is because the near-wall 
value of the total fluctuation energy is essentially over­
whelmed by the streamwise component. 

Similar to the normal fluctuations, the peak Reynolds 
stress occurs at increasingly higher values of y+ as the 
Reynolds number increases as shown in Figs 34a and 34b, 
compiled from directly measured and computed turbulence 
shear stress data, respectively. The lowermost two data 
points in Fig 34b correspond to the location of the peak 
Reynolds stress, or the critical layer position, in typical 
transitional boundary layer and channel flows. A least-
square fit of all the data points in both figures leads to the 
same equation: 

[y +] = 2 [Re*]1 *10.5 (30) 

where y is the location of peak Reynolds stress. Note that 
although probe resolution has a significant effect on the 
magnitude of turbulence intensity, Reynolds stress or other 
higher-order statistics, a relatively long probe should have 
less effect on the accuracy of determining the peak location 
of these quantities. It is therefore not surprising that 
Sreenivasan (1989) could use a variety of data sources, in­
cluding some with insufficient probe resolution, to arrive at 
the correlations in Eqs 29 and 30. 

Equation 30 indicates that the location of the peak turbu­
lence stress scales on the geometric mean of the inner and 
outer scales. Recall that, since this is the position in 
Sreenivasan's (1988) model discussed in Section 4, where 
all the mean vorticity of a turbulent boundary layer has 
been assumed to be concentrated into a single sheet, the 
correlation in Eq 30 gives some credence to his hypothesis. 

Note that if a velocity profile is assumed for the case of 
fully-developed channel flow, exact expressions for the lo­
cation of the peak Reynolds stress and turbulence kinetic 
energy production could be derived from Eq 26. For exam­
ple, if the logarithmic mean-velocity profile,10 Eq 8, is 

used, the peak Reynolds stress occurs at y+ = 1.56 Re*0-5, 

while the peak production occurs at a fixed y+. 
At high Reynolds numbers the peak Reynolds stress oc­

curs substantially outside the viscous region. Note however 
that, due to the shrinking of the inner layer as the Reynolds 

Not an accurate assumption for v+ < 30. 
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number increases, this peak location moves closer to the 
wall as a fraction of the boundary layer thickness. 
Interestingly, while the most significant Reynolds-stress-
producing activity does not occur at a universal value of y+, 
the production of turbulence kinetic energy, -ux>(dU/dy) , 
does always peak at v+ « 15. This implies that, at high 
Reynolds numbers where the two positions dispart, the 
scales producing the Reynolds stress are quite different 
from those responsible for the turbulence kinetic energy 
production. It is this observation that led Townsend (1961) 
to hypothesize the existence of an active motion and an in­
active motion within the inner layer. The former is due to 
the vorticity field of the inner-layer proper and is responsi­
ble for Reynolds stress production. The statistical properties 
of the active motion are presumably universal functions of 
the distance from the wall. The inactive, larger-scale mo­
tion is partly due to the irrotational field sloshing associated 
with the pressure fluctuations in the outer layer and partly 
the large-scale vorticity field of the outer-layer turbulence 
which the inner layer sees as an unsteady external stream 
(see also the substantiative measurements of Bradshaw, 
1967). The inactive motion does not scale with inner vari­
ables, and is characterized by intense velocity fluctuations. 
The effect of increasing the Reynolds number can then be 
thought of as the increasing significance of the inactive 
motion (see also Naguib and Wark, 1994). 

The primary conclusion of this and the previous subsec­
tions is that Reynolds number does have an effect on the 
turbulence shear stress even in the inner layer. Inner scaling 
fails to collapse the Reynolds stress profiles. The peak 
value of -uv increases with Reynolds number and its 
position moves outward when expressed in wall units. 

6.2.3 Asymptotic theory 
The results depicted in Sections 6.1, 6.2.1 and 6.2.2 indicate 
that inner scaling fails to collapse the profiles for the 
Reynolds stress and for the root-mean-square values of the 
velocity fluctuations. Considerable Reynolds number ef­
fects are exhibited even for v+ values less than 100. Panton 
(1990a) points out that a turbulent wall-bounded flow is 
fundamentally a two-layer structure, a classical single per­
turbation situation. At finite Reynolds numbers, neither the 
inner representation nor the outer representation is a uni­
formly valid approximation to the true answer in the 
matching region. As Ree varies, the overlap layer changes 
size and the proportions of inner and outer effects are 
altered. 

A uniformly valid answer for the present singular pertur­
bation problem could be obtained by forming an additive 
composite expansion from the inner and outer expansions. 
Matching essentially replaces the two lost boundary condi­
tions at y = 0 and v = oo, and the additive composite ex­
pansion is simply the sum of the inner and outer ones mi­
nus the common part (see, for example, Van Dyke, 1974). 
Systematic changes with Reynolds number that are consid­
ered anomalies when turbulent quantities are expressed as 

inner expansions could then be considered as proper first-
order trends that are expected when viewed in the proper 
light. Such treatment were demonstrated for the mean flow 
(Panton, 1990b), for the rms turbulent fluctuations (Panton, 
1991), and for the Reynolds stress (Panton, 1990a). Root-
mean-square values of the velocity fluctuations or Reynolds 
stress expressed as additive composite expansions are 
equivalent in accuracy to the mean velocity expressed as 
the law of the wall plus the law of the wake. 

For the mean flow, Panton (1990a) suggests the use of an 
inner velocity scale that is different from the friction veloc­
ity (see Eq 7 of the present article), the two being equal 
only in the limit of infinite Reynolds number. Within the 
framework of an asymptotic theory (Yajnik, 1970; Afzal, 
1976; Afzal and Bush, 1985), the lowest-order equation for 
the mean flow shows weak Reynolds number dependence 
while that for the Reynolds stress indicates a much stronger 
effect. According to Panton (1990a), the logarithmic nature 
of the inner, outer and composite expansions for the mean 
flow dictates minimal Reynolds number effects. On the 
other hand, the Reynolds stress behaves algebraically and 
the inner/outer effects are mixed in different proportions 
and occur at different locations, resulting in strong 
Reynolds number dependency even in the first-order theory. 
Moreover, the additive composite expansion for the 
Reynolds stress does not evince a constant-stress region, 
only the inner expansion does so. 

6,3 Spectra 

It is often useful to analyze the kinetic energy of the turbu-
3 i— 
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Fig 35. Power spectra of the streamwise velocity fluctuations at y+ = 15. 
Inner variables scaling is used for normalization. Channel flow data at three 
Reynolds numbers; from Wei and Willmarth (1989): (a) Semi-log plot; (b) 
Log-log plot. 
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lent fluctuations according to its distribution over the vari­
ous frequencies occurring in these fluctuations. The energy 
(or power) density spectrum of the fluctuating velocity 
components or Reynolds stress is computed from the re­
spective instantaneous, digitized signals, and can yield in­
formation regarding structural evolution as the Reynolds 
number changes. Consider the channel flow data of Wei 
and Willmarth (1989) taken at y+ = 15 at three different 
Reynolds numbers: Refl = 2970; 14,914; and 22,776. The 
power spectra of the streamwise velocity fluctuations non-
dimensionalized with inner variables are plotted versus the 
angular frequency in wall units on a semi-log scale in Fig 
35a and on a log-log scale in Fig 35b. The normalization 
employed in these figures is that used by Perry and Abell 
(1975) and is such that the area under each curve is the 
mean-square of the velocity fluctuations in wall units. 
Essentially: 

0+(co+) = co+ $(«>)/v 

a 
+ = co v/U2 

(31) 

(32) 

where <£(©) is the power spectral density of the velocity (or 
Reynolds stress) fluctuations, to is the radian frequency, and 
co+ is the frequency scaled with inner variables. 
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Fig 36. Power spectra of the normal velocity fluctuations aty =15. 
Channel flow data from Wei and Willmarth (1989). 
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Although there is appreciable scatter at lower frequen­
cies (in the semi-log plot),11 the w-power spectra in Figure 
35 suggest that the energy-containing eddies scale on inner 
variables in the vicinity of the kinetic energy production 
peak, y+ = 15. However, at high frequencies, the spectra 
begin to diverge from inner-layer scaling and greater energy 
is available with increasing Reynolds number (see the log-
log plot in Fig 35b, which emphasizes the low-energy por­
tion of the spectrum). This is consistent with the appearance 
of smaller eddies and increased vortex stretching at higher 
Reynolds numbers as will be discussed in Section 7. Notice 
that the increase in the streamwise turbulence kinetic en­
ergy with Reynolds number is very slight, consistent with 
the near-collapse of u'- data fory* < 15 in Fig 25. 

Normalized plots similar to Fig 35a but for the near-wall 
normal velocity fluctuations and Reynolds stress are given 
in Figs 36 and 37, respectively. Neither set of plots scale on 
inner variables over a large portion of the energy-containing 
frequency range. This is consistent with Wei and 
Willmarth's (1989) assertion that neither the o'-profiles nor 

the -wu -profiles scale on inner variables even very close to 
the wall (Figs 25 and 31). 

The power spectra of the streamwise velocity, normal 
velocity and Reynolds stress in the same channel flow as 
above but near the edge of the inner layer, y+ = 125, are 
shown in Figs 38, 39, and 40, respectively. Again, the area 
under each spectrum represents the mean square of the cor­
responding velocity or Reynolds stress fluctuations normal­
ized with inner variables. Reynolds number effects on the 
high-frequency portion of the spectrum appear to be less 
pronounced at this distance farther away from the wall as 
compared to the spectra in the near-wall region depicted in 
Figs 35-37. Since the mean-velocity gradient decreases with 
increasing distance from the wall, Wei and Willmarth 
(1989) attribute the weaker Reynolds number-dependence 
to a diminished stretching of vorticity farther away from the 
wall. On the other hand, in the low-frequency portion of the 
spectra, Reynolds number effects are stronger. The lack of 
scaling with inner variables at y+ = 125 is consistent with 
the measurements of Bradshaw (1967) and is due to the 
large-scale inactive motion. 

The power spectra of the streamwise velocity fluctua­
tions in the high-Reynolds number pipe flow experiment of 
Perry and Abell (1975) are shown in Fig 41. In this nor­
malized log-log plot, 0(ky)/Ux

2 is plotted versus ky, where k 
is the wavenumber, The data points represent several 
Reynolds numbers in the range of Rea = 40,000-130,000, 
and several distances from the wall in the range of y+ = 
150-444. These distances correspond to the region of over­
lap where y is much larger than the viscous length-scale but 
much smaller than the outer scale (see Section 3.2). In this 
constant-Reynolds stress regime, the spectrum does not 
change with wall distance. The straight line in the log-log 
plot has the slope of-1, predicted for the equilibrium range 
of the spectrum using scaling arguments (see Sreenivasan, 

Fig 37. Power spectra of the Reynolds stress fluctuations at v+ = 15. 
Channel flow data from Wei and Willmarth (1989). 

1 1 As will be shown in Figs 36 and 37, there is even more scatter in the u-
and Ko-spectra when similarly plotted on semi-log plots. 
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1989). The large-scale fluctuations outside this equilibrium 
range constitute the so-called inactive motion mentioned 
earlier. At the other end of the scale, the smaller eddies 
(high wavenumbers) either obey the usual -5/3 
Kolmogorov-law provided the Reynolds number is high 
enough to create an inertial subrange, or simply be domi­
nated by viscosity at low Reynolds numbers. 

In summary, only the y-turbulence spectra scale with in­
ner variables very close to the wall (y+ < 15), while those 
for u and wo do not. In the constant- stress layer and over a 
wide range of Reynolds numbers, the spectrum of the longi­
tudinal velocity fluctuations has a -1 slope in the equilib­
rium range of eddies. 

6.4 Skewness and flatness factors 
The third and fourth moments of a random signal give use­
ful statistical information regarding the temporal distribu­
tion of its fluctuations around an average value. When 
nondimensionalized using the root-mean-square value of 
the fluctuations, these become the skewness and flatness 
factors, respectively. For example, for the streamwise ve­
locity fluctuations the skewness and flatness factors are de­
fined as follows: 

irW = ( W / / ' ( " r m s ) 4 

(33) 

(34) 

Similar expressions can be written for the skewness and 
flatness factors for the other two velocity components, the 
Reynolds stress, the velocity derivative with respect to time, 
etc. 

For a Gaussian signal, the probability distribution is 
symmetric around the mean value and those factors are re­
spectively 5=0 and F = 3. A nonzero skewness factor indi­
cates the degree of temporal asymmetry of the random 
fluctuations, eg acceleration versus deceleration or sweep 
versus ejection. Flatness factor larger than 3 is associated 
with a peaky signal as for example that produced by in­
termittent turbulent events. 
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Unlike the second and higher even moments, the third 
and all higher odd-number moments retain the sign infor­
mation and thus contain valuable statistical information re­
lated to the coherent structures. The skewness of a turbu­
lence quantity can be thought of as representing the flux of 
a stress which is directly attributable to coherent structures. 

For example, w3 is the streamwise flux of the streamwise 

turbulence kinetic energy u2 , -w2u is the streamwise flux 

of the Reynolds stress wu, -MV> 
etc. 

is the normal flux of uv, 

A combination of positive u and negative u3 is 
associated with sweep events, while a combination of 

negative w3 and positive o3 is attributable to ejection 

events (see Section 7). Similarly, -w2u and -wo2 denote 
streamwise flux and outward transport of shear stress, 
respectively. Note that, via triple moments, structural 
information can be extracted without ambiguity. That is, 
without recourse to any subjective threshold setting as in 
the so-called VITA and VISA-variable-interval time- or 
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Fig 39. Power spectra of the normal velocity fluctuations at/1" : 

Channel flow data from Wei and Willmarth (1989). 
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Fig 38.. Power spectra of the streamwise velocity fluctuations at v+ = 125. 
Channel flow data from Wei and Willmarth (1989). 

Fig 40. Power spectra of the Reynolds stress fluctuations aty+ = 125. 
Channel flow data from Wei and Willmarth (1989). 
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space-averaging techniques (Blackwelder and Kaplan, 
1976), respectively. The flatness factor, on the other hand, 
is always positive. Near the rotational/irrotational interface 
of a turbulent boundary layer and in the near-wall region 
where intermittent bursting events take place, the 
normalized fourth moment attains large values. 

Profiles of the skewness factor of the streamwise veloc­
ity fluctuations in the boundary-layer flow of Andreopoulos 
et al (1984) are plotted in Fig 42 for four Reynolds numbers 
in the range of Re9 = 3624-15,406. High positive values of 
Su are observed in the viscous sublayer, indicating the 
skewed nature of the acceleration-dominated velocity fluc­
tuations there. As a result of the arrival of high-speed fluid 
from regions away from the wall (sweep events), large 
positive values of u occur more frequently than large nega­
tive values in the near-wall region. In the log region, the 
skewness factor is only slightly different from that for a 
Gaussian probability density distribution. Farther away 
from the wall, the skewness is negative consistent with the 
arrival of low-speed fluid from the wall region (de-
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Fig 41. Normalized power spectra of the streamwise velocity fluctuations. 
Pipe flow data from Perry and Abell (1975) at different Reynolds numbers 
and different distances from the wall. 
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celeration-dominated ejection events). Reynolds number 
effects are stronger in the wake region of the flow where the 
skewness is negative, although some effects penetrate all 
the way to the edge of the viscous sublayer. Figure 42 
indicates strong Reynolds number effects on the streamwise 
flux of the longitudinal turbulence kinetic energy due to 
both sweep and ejection events. 

Kline (1967) has proposed that the near-wall value ofSu 

is related to the width of the low-speed streaks (Section 
7.1). In low-Reynolds number flows, the most probable lo­
cation of the breakup stage of the bursting process is aty1" = 
15. According to the data in Fig 42, the value of Su changes 
sign at that y+ at Ree = 3624, but at the higher Reynolds 
number of Ree = 15.4xl03, the skewness does not change 
sign till v+* 200. 

Smits et al (1989) have compared the skewness factor Su 

for subsonic low-Reynolds number (Me = 0.1; Re9 = 5xl03)' 
and supersonic high-Reynolds number (Mx = 2.9; Re6 = 
80x103) turbulent boundary layers. Since the effect of Mach 
number appears to be weak and can be taken into account 
by considering the local fluid properties, the comparison 
primarily shows the effect of Re9. It is interesting that in 
Smits et afs experiments, Stl changes sign at y/8 = 0.17 for 
ReG = 5xl03, but at y/8 = 0.68 for Re9 = 80xl03. Thus, the 
point of cross-over from the sweep- to the ejection-
dominated motions moves outward as ReG increases and 
shows no sign of reaching an asymptote. Admittedly, the 
available data are scarce, but it is clear that Reynolds 
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Fig 42. Profiles of skewness factor of streamwise velocity fluctuations at 
four Reynolds numbers (from Andreopoulos et al, 1984). 

Fig 43. Skewness of the velocity derivative duldt in the inner region of a 
pipe flow (from Elena and Dumas, 1978). 
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number effects on third- and higher-order moments are 
stronger than those on the first- and second-order moments. 

In isotropic turbulence, the skewness of the velocity de­
rivative du/dx signifies the inertial transfer of energy across 
the wavenumber domain and is proportional to the produc­
tion of mean-square vorticity by vortex stretching. For the 
anisotropic wall-bounded flow, Sreenivasan (1989) argues 
that such interpretations may hold at least qualitatively. 
Figure 43 depicts S(du/dt) for the pipe flow data of Elena and 
Dumas (1978). In a high-shear flow, time derivative is very 
roughly related to space derivative through the Taylor's fro­
zen flow hypothesis. The skewness profile in Fig 43 is 
typical and peaks at roughly S(du/dt) = 1 around y+ = 12, in­
dicating strong nonlinear effects, or vortex stretching, in the 
same region where production of turbulence kinetic energy 
also reaches a maximum. The value ofS(du/d!) drops to 0.4 in 
the outer layer and towards zero at the wall. Similar trends 
are observed in channel flows (Comte-Bellot, 1963) and 
boundary layers (Ueda and Hinze, 1975), 

For the reasons indicated in Section 6.1, Andreopoulos et 
al (1984) measured the normal velocity fluctuations at the 
single low Reynolds number of Ree = 3624. Their results 
for the skewness factor of the normal-velocity fluctuations 
are depicted in Fig 44. Unlike the skewness of the stream-
wise velocity fluctuations, the value of Su is negative near 
the wall and positive in the outer flow region, signaling the 
more frequent occurrence of negative and positive normal 
velocity fluctuations in the inner and outer layer, respec­
tively. The skewness is again near zero in the overlap 
region, 

Andreopoulos et aTs (1984) data follows the general 
trends of those measured by Gupta and Kaplan (1972), but 
differ somewhat from the data of Kreplin and Eckelmann 
(1979) and more strongly from those due to Kutateladze 
and Khabakhpasheva (1978). The disagreements are par­
ticularly noticeable in the near-wall region. This is not sur­
prising considering the spatial and temporal probe-resolu­
tion difficulties associated with the measurement of higher-
order moments. The near-wall distribution of the skewness 
of the normal velocity fluctuations is compared for the four 

different experiments in Fig 45. Note that a linear scale is 
used for the abscissa in this figure. Except for the data of 
Kutateladze and Khabakhpasheva (1978), Sv is positive for 
v+ > 5 and negative for y+ < 5. It is intriguing that as the 
wall is approached, the increased viscous effects and wall 
constrain are incapable of damping the wall-ward compo­
nent of the velocity fluctuations. 

Profiles of the flatness factor of the streamwise velocity 
fluctuations in the boundary layer flow of Andreopoulos et 
al (1984) are plotted in Fig 46 for four different Reynolds 
numbers in the range of Re6 = 3624-15,406. The kurtosis 
has high values near the wall and in the outer layer, 
indicating that the turbulence is highly intermittent in both 
places. In the overlap region, Fu is nearly 3, and Reynolds 
number effects are weak. But Reynolds number effects are 
noticeable in the buffer layer penetrating all the way to the 
edge of the viscous sublayer and are much stronger in the 
outer layer, much the same as the corresponding effects on 
the skewness factor Su depicted in Fig 42. 
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the wall (from Andreopoulos et al, 1984). 

Fig 46. Profiles of flatness factor of streamwise velocity fluctuations at four 
Reynolds numbers (from Andreopoulos et al, 1984). 
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Table l. Wall-pressure fluctuation statistics

Flow...

cant events in the wall region. Additionally, pressure fluc­
tuations in a wall-bounded flow induce structural vibrations
on the surface and are believed to be responsible for radi­
ated noise. Solving practical engineering problems that deal
with reducing this flow-induced noise, for example to im­
prove the performance of sonar domes on submarines or to
suppress unpleasant noise in the interior of commercial air­
craft, requires documenting the important statistics of the
random pressure field, such as root mean square, spectrum,
and cross correlation.

The local static pressure fluctuations across a shear flow
cannot yet be measured. The only location where it can be
measured is at the wall. This is often advantageous since in­
formation on convective structures within the boundary
layer can be obtained nonintrusively by using wall-pressure
sensors. The subject of wall-pressure measurements has
been reviewed by Willmarth (1975b). Johansson et at
(1987) and Farabee and Casarella (1991) describe the cur­
rent status. The latter authors show that the applicable
scaling laws change with the frequency range of the spec­
trum. As anticipated earlier by Panton and Lineberger
(1974), the friction velocity and the boundary layer thick­
ness are the appropriate scales at low wavenumbers. At high
wavenumbers, the friction velocity and the viscous length­
scale seem to collapse the data (Robert, 1993; Panton and
Robert, 1993; 1994).

Reliable laboratory measurements of pressure fluctua­
tions are particularly difficult since extraneous freestream
turbulence and acoustic noise are unavoidably sensed by the
wall-mounted microphones. To partially alleviate this
problem, Panton et at (1980) conducted pressure measure­
ments on the fuselage of a sail plane. Contributions from
potential motion outside the boundary layer were measured
and show a slight Reynolds number dependence.

The state of the art of probe resolution is a much more
serious problem for wall pressure than it is in velocity­
based variables. For example. pressure sensors as large as
450 wall units have been used in the past. Schewe (1983)
used one of the smallest probes. having an effective diame­
ter of 19v/U

T
More recently, Lauchle and Daniels (1987)

used sensors with diameters in the range of 0.7-1.5 wall
units. However. the glycerin pipe-flow facility they utilized
was acoustically noisy, and elaborate noise-removal tech­
niques were used to process the pressure fluctuations data,
The wall-pressure spectra measured by Lauchle and Daniels
in the range of Reynolds numbers ofRe

ll
= 7000-16,500 are

consistent with the flow physics: higher Reynolds number
flow supports smaller scales and hence higher-frequency
pressure fluctuations. When non-dimensionalized with wall
variables. however, the spectra, in that range of Reynolds
numbers, seem to collapse,

Keith et at (1992) assert that attenuations resulting from
inadequate spatial resolution of a sensor are of primary con­
cern. Variations among different data sets are reduced at
higher frequencies when resolution effects are accounted
for. Keith et at clearly show the Reynolds number effects in
the scaling of the low-frequency portion of wall-pressure
spectra; while at low Ree(< 4.5xl 03) a mixed scaling ap-
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200

3.59

Sweep

Flight: Boeing 737 forward
(Bhatt. 1971)

100

1.26

Ejection
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200
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b. Flat-Plate and Channel Simulations
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(Willmarth. 1975b)
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(Bandyopadhyay and Balasubramanian. 1994)

p',jU~

p\ju~ 2.3 - 2.4 2.8 1.9 2.7 1.4

Rea 353 - 505 576 300 1410 ReD = 1.38 x l04

LES DNS DNS
(Tsai & Leslie, (Spalart, 1988) (Kim et al. 1987)

1990)

Vortex Model

6.5 Wall-pressure fluctuations

Important physics of the turbulent wall-bounded flow can
be learned from the measurements of the instantaneous
pressure. Pressure fluctuations are often proposed as an im­
portant mechanism by which the outer region of a boundary
layer rould influence and even initiate dynamically signifi-

Fig 47. Side view of a low-Reynolds number turbulent boundary layer; Reg

= 725. Flat plate towed in a weter channel. Large eddies are visualized using
a sheet of laser and fluorescence dye (from Gad-cl-Hak et aI, 1984).
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Fig 48. Top view of a low-Reynolds number turbulent boundary layer; ReG

=742. Wind tunnel experiment. Pockets. believed to be the fingerprints of
typical eddies. are visualized using dense smoke (from Falco. 1980).

Fig 49. Top view ofa low-Reynolds number turbulent boundary layer; ReG

=725. Flat plate towed in a water channel. Low-speed streaks are visualized
using a sheet oflascr and fluorescence dye (from Gad-el-Hak el al. 1984).

Flow..

on the issues of the origin of and interaction between the
different structures, regeneration mechanisms, and
Reynolds number effects. What follow are somewhat biased
remarks addressing those issues. At times diverse view
points will be presented but for the most part particular sce­
narios, which in the present authors' opinion are most likely
to be true, will be emphasized. The interested reader is re­
ferred to the large number of review articles available (eg,
Kovasznay, 1970; Laufer, 1975~ Willmarth, 1975a; 1975b;
Saffman, 1978; Cantwell, 1981; Fiedler, 1986; 1988;
Blackwelder, 1988; Robinson, 1991). The last reference in
particular summarizes many of the different, sometimes
contradictory, conceptual models offered thus far by differ­
ent research groups. Those models are aimed ultimately at

Flow...

7. COHERENT STRUCTURES

plies, outer scaling holds better at higher ReG (> 4.5xl03).

In their work, the outer scaling of the low-frequency end of
the spectrum is related to the mixed scaling by the factor
(U/U,,,y, which decreases as ReG increases. This observed
change in the scaling laws with Reynolds number is intrigu­
ing. Inner scaling seems to be effective, on the other hand,
at the high-frequency portion of the spectra over the entire
range of Reynolds numbers where reliable data are avail­
able.

Note that even a weak Reynolds number dependence in
wavenumber space will be accentuated in frequency space.
The reason being that a large eddy moving at a fast speed
would produce the same frequency as a small eddy moving
at a low speed. For that reason, Panton (1989) developed his
inner/outer theory in wavenumber-phase velocity space and
reasonable agreement with experimental data was observed
(Panton and Robert, 1994).

Table 1, adapted from Bandyopadhyay and
Balasubramanian (1994), is a summary of rms wall pres­
sure, normalized with the square of the friction velocity,
from measurements and simulations. Both the physical and
numerical experiments indicate a slight increase with
Reynolds number, a result that is also theoretically antici­
pated (Bradshaw, 1967). In the structural model of
Bandyopadhyay and Balasubramanian, higher Reynolds
number effects inp'w are better simulated by higher vortex­
Reynolds number sweep motions.

The classical view that turbulence is essentially a stochastic
phenomenon having a randomly fluctuating velocity field
superimposed on a well-defined mean has been changed in
the last few decades by the realization that the transport
properties of all turbulent shear flows are dominated by
quasi-periodic, large-scale vortex motions (Laufer, 1975;
Townsend, 1976; Cantwell, 1981). Despite the extensive re­
search work in this area, no generally accepted definition of
what is meant by coherent motion has emerged. In physics,
coherence stands for well-defined phase relationship. For
the present purpose we adopt the rather restrictive definition
given by Hussain (1986): a coherent structure is a con­
nected turbulent fluid mass with instantaneously phase-cor­
related vorticity over its spatial extent. In other words, un­
derlying the random, three-dimensional vorticity that char­
acterizes turbulence, there is a component of large-scale
vorticity which is instantaneously coherent over the spatial
extent of an organized structure. The apparent randomness
of the flow field is, for the most part, due to the random size
and strength of the different type of organized structures
comprising that field.

In a wall-bounded flow, a multiplicity of coherent struc­
tures have been identified mostly through flow visualization
experiments, although some important early discoveries
have been made using correlation measurements (eg,
Townsend, 1961; 1970; Bakewell and Lumley, 1967).
Although the literature on this topic is vast, no research­
community-wide consensus has been reached particularly
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explaining how the turbulence maintains itself, and range 
from the speculative to the rigorous but none, unfortunately, 
is self-contained and complete. Furthermore, the structure 
research dwells largely on the kinematics of organized mo­
tion and little attention is given to the dynamics of the re­
generation process. 

7.1 Overview 

With few exceptions, most of the available structural in­
formation on wall-bounded flows come from rather low-
Reynolds number experiments and numerical simulations. 
Organized structures appear to be similar in all wall-
bounded flows only in the inner layer. The outer region of a 
boundary layer is by necessity different from the core re­
gion of a pipe or channel flow. Before getting to the issue 
of Reynolds number effects, an overall view, whose source 
of information is predominately low-Reynolds number ex­
periments, is first presented. As will become clear through­
out the discussion following the present subsection, the 
picture that emerges at high Reynolds numbers is quite dif­
ferent, and structural information gleaned from low-
Reynolds number physical and numerical experiments may 
not be very relevant to high-Reynolds number flows. 

In (low-Reynolds number) external flows, the turbulence 
production process is dominated by three kinds of quasi-
periodic eddies: the large outer structures, the intermediate 
Falco-Newman eddies,12 and the near-wall eddies. 
Examples of these coherent structures visualized in rather 
low-Reynolds number boundary layers are depicted in Figs 
47-49. Laser sheet illumination is used in all three photo­
graphs. The large eddies forming on a flat plate towed in a 
water channel are seen in the side view in Fig 47. The flow 
is from left to right. The artificially tripped boundary layer 
has a Reynolds number at the observation station of Re6 = 
725, and is marked with fluorescein dye. The smoke-filled 
boundary layer shown in top view in Fig 48 depicts the 
characteristic pockets believed to be induced by the motion 
of Falco-Newman eddies over the wall. In here, the experi­
ments are conducted in a wind tunnel at a momentum thic­
kness Reynolds number of ReG = 742, and the boundary 
layer is again artificially tripped. Finally, the top view in 
Fig 49 depicts the low-speed streaks in the near-wall region 
of the same turbulent boundary layer previously shown in 
side view in Fig 47. Flow direction is again from left to 
right. 

The large, three-dimensional bulges (Fig 47) scale with 
the boundary layer thickness, 5, and extend across the entire 
layer (Kovasznay et al, 1970; Blackwelder and Kovasznay, 
1972). These eddies control the dynamics of the boundary 
layer in the outer region, such as entrainment, turbulence 
production, etc. The large eddies are characterized by a 
sharp interface and a highly contorted surface which exhib­
its a significant amount of folding (Paiziz and Schwarz, 
1974) and has a fractal dimension of close to 2.4 
(Sreenivasan et al, 1989). They appear randomly (quasi-pe-

riodically) in space and time, and seem to be, at least for 
moderate Reynolds numbers, the residue of the transitional 
Emmons spots (Zilberman et al, 1977; Gad-el-Hak et al, 
1981). Note, however, that at higher Reynolds numbers 
(Re6 -17,000) the very existence of the large eddy as an 
isolated coherent structure has been questioned by Head and 
Bandyopadhyay (1981), and this point will be revisited in 
Section 7.2.2. 

The Falco-Newman eddies are also highly coherent and 
three-dimensional. Falco (1974; 1977) named them typical 
eddies because they appear in wakes, jets, Emmons spots, 
grid-generated turbulence, and boundary layers in zero, fa­
vorable and adverse pressure gradients. They have an in­
termediate scale of about 100 wall units. The Falco-
Newman eddies appear to be an important link between the 
large structures and the near-wall events. In the plan view 
shown in Fig 48, smoke fills the near-wall region of a 
boundary layer and the roughly circular regions devoid of 
marked fluid are called pockets.13 Falco (1980) asserts that 
these pockets are lbs footprints of some outer structures that 
induce fluid towards the wall. Robinson et al (1989) ana­
lyzed the data base generated from the direct numerical 
simulations of Spalart (1988). They concur that the pockets 
are the signature of local wall-ward motions, evidenced by 
spanwise divergence of streamlines, above regions of high 
wall-pressure. Low-pressure regions, on the other hand, oc­
cur along lines of converging streamlines associated with 
outward motion. 

The third kind of eddies exists in the wall region (0 < y+ 

< 100) where the Reynolds stress is produced in an intermit­
tent fashion. Half of the total production of turbulence ki­
netic energy -wo (dU/dy) takes place near the wall in the 
first 5% of the boundary layer at typical laboratory 
Reynolds numbers (smaller fraction at higher Reynolds 
numbers), and the dominant sequence of intense organized 
motions there are collectively termed the bursting phe­
nomenon. This dynamically significant process, identified 
during the 1960s by researchers at Stanford University 
(Kline and Runstadler, 1959; Runstadler et al, 1963; Kline 
et al, 1967; Kim et al, 1971; Offen and Kline, 1974; 1975), 
was reviewed by Willmarth (1975a) and Blackwelder 
(1978), and most recently by Robinson (1991). 

Qualitatively, the process, according to at least one 
school of thought, begins with elongated, counter-rotating, 
streamwise vortices having diameters of approximately 
40v/£/T. This estimate for the diameter of the vortex is ob­
tained from the conditionally averaged spanwise velocity 
profiles reported by Blackwelder and Eckelmann (1979). 
There is a distinction, however, between vorticity distribu­
tion and a vortex (Saffman and Baker, 1979; Robinson et 
al, 1989; Robinson, 1991), and the visualization results of 
Smith and Schwartz (1983) may indicate a much smaller 
diameter. In any case, the counter-rotating vortices exist in 
a strong shear and induce low- and high-speed regions be­
tween them. The vortices and the accompanying eddy 

Identified independently at about the same time by Falco (1974) and 
Newman (1974). 

These undulations are very similar to the so-called folds observed by 
Perry el al. (1981) in turbulent spots. 
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structures occur randomly in space and time. However, 
their appearance is sufficiently regular that an average 
spanwise wavelength of approximately 80 to 100v/£/T has 
been identified by Kline et al (1967) and others. 

It might be instructive at this point to emphasize that the 
distribution of streak spacing is very broad. The standard of 
deviation is 30 - 40% of the more commonly quoted mean 
spacing between low-speed steaks of 100 wall units. Both 
the mean and standard deviation are roughly independent of 
Reynolds number in the rather limited range of reported 
measurements (Ree = 300-6500, see Smith and Metzler, 
1983; Kim et al 1987). Butler and Farrell (1993) have 
shown that the mean streak spacing of 100v/t/T is consistent 
with the notion that this is an optimal configuration for ex­
tracting "the most energy over an appropriate eddy turnover 
time." In their work, the streak spacing remains 100 wall 
units at Reynolds numbers, based on friction velocity and 
channel half-width, of a+ = 180-360. 

Kim et al (1971) observed that the low-speed regions 
(Fig 49) grow downstream, lift up and develop inflectional 
U(y) profiles. At approximately the same time, the inter­
face between the low- and high-speed fluid begins to oscil­
late, apparently signaling the onset of a secondary instabil­
ity. The low-speed region lifts,up away from the wall as the 
oscillation amplitude increases, and then the flow rapidly 
breaks up into a completely chaotic motion. The streak 
oscillations commence at y+ « 10, and the abrupt breakup 
takes place in the buffer layer although the ejected fluid 
reaches all the way to the logarithmic region. Since the 
breakup process occurs on a very short time scale, Kline et 
al (1967) called it a burst. Virtually all of the net produc­
tion of turbulence kinetic energy in the near-wall region oc­
curs during these bursts. 

Corino and Brodkey (1969) showed that the low-speed 
regions are quite narrow, ie, 20v/E/T, and may also have 
significant shear in the spanwise direction. They also indi­
cated that the ejection phase of the bursting process is fol­
lowed by a large-scale motion of upstream fluid that ema­
nates from the outer region and cleanses (sweeps) the wall 
region of the previously ejected fluid. The sweep phase is, 
of course, required by the continuity equation and appears 
to scale with the outer-flow variables. The sweep event 
seems to stabilize the bursting site, in effect preparing it for 
a new cycle. 

Considerably more has been learned about the bursting 
process during the last decade. For example, Falco (1980; 
1983) has shown that when a typical eddy, which may be 
formed in part by ejected wall-layer fluid, moves over the 
wall it induces a high t/u sweep (positive u and negative v>). 
The wall region is continuously bombarded by pockets of 
high-speed fluid originating in the logarithmic and possibly 
the outer layers of the flow. These pockets appear to scale, 
at least in the limited Reynolds number range where they 
have been observed, Re9 = O[1000], with wall variables and 
tend to promote and/or enhance the inflectional velocity 
profiles by increasing the instantaneous shear leading to a 
more rapidly growing instability. The relation between the 
pockets and the sweep events is not clear, but it seems that 

the former forms the highly irregular interface between the 
latter and the wall-region fluid. More recently, Klewicki et 
al (1994) conducted a four-wire hot-wire probe measure­
ments in a low-Reynolds number canonical boundary layer 
to clarify the roles of velocity-spanwise vorticity field inter­
actions regarding the near-wall turbulent stress production 
and transport. 

Other significant experiments were conducted by 
Tiederman and his students (Donohue et al 1972; 
Reischman and Tiederman, 1975; Oldaker and Tiederman, 
1977; Tiederman et al, 1985) and Smith and his colleagues 
(Smith and Metzler, 1982; 1983; Smith and- Schwartz, 
1983). The first group conducted extensive studies of the 
near-wall region, particularly the viscous sublayer, of chan­
nels with Newtonian as well as drag-reducing non-
Newtonian fluids. Smith's group, using a unique, two-cam­
era, high-speed video system, was the first to indicate a 
symbiotic relationship between the occurrence of low-speed 
streaks and the formation of vortex loops in the near-wall 
region. 

7.2 Open issues 

There are at least four unresolved issues regarding coherent 
structures in wall-bounded flows, not all are necessarily in­
dependent: How does a particular structure originate; how 
do different structures, especially the ones having disparate 
scales, interact; how does the turbulence continue to regen­
erate itself; and does the Reynolds number affect the differ­
ent structures in any profound way? The primary difficulty 
in trying to answer any of those queries stems from the 
existence of two scales in the flow that become rather dis­
parate at large Reynolds numbers (Fig 2). The closely re­
lated issues of origin, inner/outer interaction and regenera­
tion will be addressed in the following two subsections. 
Reynolds number effects on the coherent structures are re­
served for the four subsections in Section 7.3. 

7.2.1 Origin of different structures 
Faced with the myriad of coherent structures existing in the 
boundary layer, a legitimate question is where do they all 
come from and which one is dynamically significant? 
Sreenivasan (1988) offers a glimpse of the difficulties as­
sociated with trying to answer this question. The structural 
description of a turbulent boundary layer may not be that 
complicated, however, and some of the observed structures 
might simply be a manifestation of the different aspects of a 
more basic coherent structure. For example, some research­
ers argue that the observed near-wall streamwise vortices 
and large eddies are, respectively, the legs and heads of the 
omnipresent hairpin vortices (Head and Bandyopadhyay, 
1981). Nevertheless, that still leaves us with a minimum 
number of building blocks that must be dealt with. 

If the large eddies are assumed to be dynamically sig­
nificant, then how are they recreated? It is easy to argue 
that the conventional laminar-to-turbulent transition can not 
be responsible, because the same large eddies appear even 
in heavily tripped boundary layers where the usual transi­
tion routes are by-passed. Wall events can not be responsi-
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ble for creating large eddies because of their extremely 
small relative scale at high Reynolds number. Furthermore, 
no hierarchical amalgamation of scales has been observed 
to justify such proposition. 

If, alternatively, wall events are assumed to dominate, 
then where do the streamwise vortices or the low-speed 
streaks come from and what mechanism sustains the burst­
ing cycle? Mechanisms that assume local instability can not 
be valid at large Reynolds numbers where the wall layer is, 
say, 0.1% of the boundary layer thickness,14 and it is diffi­
cult to conceive that 99.9% of the boundary layer has no 
active role in the generation and maintenance of turbulence. 
On the other hand, assuming the bursting events are trig­
gered by the large eddies brings us back to the original 
question of where do the latter come from. 

The above difficulties explain the lack of a self-consis­
tent model of the turbulent boundary layer, despite the 
enormous effort expended to establish one. None of the ex­
isting models is complete in the sense that none accounts 
for each aspect of the flow in relation to every other aspect. 
Developing a complete, self-consistent model is more than 
an academic exercise; for a proper conceptual model of the 
flow gives researchers the necessary tools to compute high-
Reynolds number practical flows using the Reynolds-aver­
aged Navier-Stokes equations and to devise novel flow 
control strategies as well as to extend known laboratory-
scale control devices to field conditions. 

7.2.2 Inner/outer interaction and regeneration mechanisms 
There is no doubt that significant interactions between the 
inner and outer layers take place. On energy grounds alone, 
it is known that in the outer layer the dissipation is larger 
than the turbulence kinetic energy production (Townsend, 
1976). It is therefore necessary for energy to be transported 
from the inner layer to the outer layer simply to sustain the 
latter. How that is accomplished and whether coherent 
structures are the only vehicle to transport energy is not 
clear, but two distinct schools of thought have emerged. In 
the first, the large-scale structures dominate and provide the 
strong buffeting necessary to maintain the low-Reynolds 
number turbulence in the viscous region (Re < 30). In the 
second view, rare, intense wall-events are assigned the ac­
tive role and, through outward turbulent diffusion, provide 
the necessary energy supply to maintain the outer region. 
As mentioned in the previous subsection, both views have 
some loose ends. 

Based on a large number of space-time two-point corre­
lation measurements of u and o, Kovasznay et al (1970) 
suggested that the outer region of a turbulent boundary 
layer is dominated by large eddies. The interface between 
the turbulent flow and the irrotational fluid outside the 
boundary layer is highly corrugated with a root-mean-
square slope in the (x-j>)-plane of roughly 0.5. The three-
dimensional bulges are elongated in the streamwise direc­
tion with an aspect ratio of approximately 2:1, and have a 

This is the near-wall region of thickness y = 30v/£/T as a percentage of 
the boundary layer thickness when the Reynolds number is Ren a 
100,000 (see Fig 6). 

characteristic dimension, in the wall-normal direction, of 
between 0.55 and 8. They appear quasi-periodically and are 
roughly similar to each other. Kovasznay et al allowed that 
the large eddies are passive in the sense that the wall events 
and not these eddies are responsible for producing the 
Reynolds stress. Kovasznay (1970) advanced the hypothesis 
that wall bursting starts a chain reaction of some sort at all 
intermediate scales culminating into a sequence of amalga­
mations which eventually leads to the large structures. As 
mentioned earlier, such hierarchical amalgamation of scales 
has not been directly observed in the laboratory. 

Head and Bandyopadhyay (1981), on the other hand, 
suggested that the very existence of the large eddies at high 
Reynolds numbers is in doubt. Their combined flow visu­
alization/hot-wire probe experiments are unique in that an 
unusually large range of Reynolds number was investigated, 
Re8 = 500-17,500, allowing them to clarify unambiguously 
Reynolds number effects on the structure of the boundary 
layer. Head and Bandyopadhyay maintained that a large 
structure seen in typical flow visualization experiments is 
nothing but the slow overturning of a random collection of 
smaller-scale hairpin vortices, just a few or even a single 
isolated vortex loop at low Reynolds numbers (say, Re6 < 
1000) but a large number of them at high Reynolds numbers 
(say, Ree > 5000). This is sketched for typical low- and 
high-Reynolds number boundary layers in Figs 50a and 
50b, respectively. A brisker rate of rotation of the isolated 
(fat) vortex loop is observed at the lowest Reynolds num­
ber, consistent with prior observations of large eddies in 
low-speed experiments. The hairpins are inclined at around 
45° to the plane of the flow over a major part of the layer 
thickness. In Head and Bandyopadhyay's (1981) view, the 
entire turbulent boundary layer consists very largely of 
vortex loops that become increasingly elongated as the 
Reynolds number increases (see Fig 3). The so-called large 
eddies, on the other hand, do not appear to exhibit any par­
ticular coherent motion beyond a relatively slow overturn­
ing or toppling due to shear. 

Corroborative evidence for the hairpin angle of inclina­
tion of 45° comes from the simultaneous, multiple-point 
hot-wire measurements of Alving et al (1990) in both a ca­
nonical turbulent boundary layer and a boundary layer re­
covering from the effects of strong convex curvature. Their 
cross-correlation results are consistent with the observation 
of large-scale structures spanning the entire shear layer and 
inclined at angles in the range of 35°-45° near the outer 
edge of the boundary layer, but at continuously decreasing 
angles as the wall is approached. 

The sketch in Fig 50b for a typical large eddy at high 
Reynolds number is consistent with the statistical findings 
of Brown and Thomas (1977), who have shown by using 
conditional averaging techniques that a typical large struc­
ture in a turbulent boundary layer has an upstream rota-
tional/irrotational interface inclined at 18° to the flow di­
rection. Head and Bandyopadhyay (1981) have observed 
such individual structures only at higher Ree (> 5000). It is 
possible to arrive precisely at this slope by modeling the 
large structure to be composed of hairpin vortices formed at 

Downloaded From: http://appliedmechanicsreviews.asmedigitalcollection.asme.org/ on 09/20/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Appl Mech Rev vol 47, no 8, August 1994 Gad-el-Hak and Bandyopadhyay: Wall-bounded turbulent flows 343

Reo = 600

Reo = 1700

Reo = 9400

Fig 51. Hairpin structures in a smoke-filled turbulent boundary layer at
three Reynolds numbers. Sheet oflaser illuminates a section making 45°
with downstream plane (from Head and Bandyopadhyay, 1981).

Inevitably in almost all the conceptual models the omni­
present hairpin vortex (or horseshoe at low Re) plays a key
role. Such a vortex has been proposed earlier by
Theodorson (1952) on intuitive grounds as the primary
structure responsible for turbulence production and dissipa­
tion in the boundary layer. His tornado-like vortices form
astride near-wall, low-speed regions of fluid and grow out­
ward with their heads inclined at 45° to the flow direction.

Black (1966; 1968) conducted a more rigorous analytical
work to show the fundamental role of hairpin vortices in the
dynamics of wall-bounded flows. His basic premise is that
the primary role of the random turbulent motion is not to
transfer mean momentum directly, but rather to excite
strong, three-dimensional instability of the sublayer which
is a powerhouse of vorticity. In Black's model. trains of dis­
crete horseshoes are generated by repetitive, localized non­
linear instabilities within the viscous sublayer. The vortical
structures are shed and outwardly migrate from the near­
wall region in a characteristic, quasi-frozen spatial array.

(a) (b)
Fig 50. Sketch of large eddy structures as a collection of smaller-scale
hairpin vortices (from Head and Bandyopadhyay. 1981): (a) Typical low­
Reynolds number boundary layer; (b) Typical high-Reynolds number
boundary layer.

-+ Flow

regular intervals (Bandyopadhyay, 1980). Such large struc­
tures composed of many hairpin vortices have not been ob­
served in the low-Reynolds number DNS simulations.

Samples of Head and Bandyopadhyay's (1981) visuali­
zation experiments at three Reynolds numbers are depicted
in Fig 51. A laser light sheet illuminates a section of the
smoke-filled boundary layer making 45° with the down­
stream plane. The vortex loops seen in this figure at Rea =
600. 1700 and 9400 correspond roughly to the vortex loop,
horseshoe vortex and hairpin vortex sketched previously in
Fig 3 of the present paper. The increased elongation of the
vortex loops as the Reynolds number increases over one or­
der of magnitude is evident in the three photographs in Fig
51.

Robinson (1991) summarizes many of the conceptual
models advanced by different researchers to explain how a
wall-bounded turbulent flow maintains itself. Among those
reviewed are the models advocated by Willmarth and Tu
(1967). Black (1968), Offen and Kline (1975), Hinze
(1975), Praturi and Brodkey (1978), Thomas and Bull
(1983), Acarlar and Smith (1987a; 1987b), and Robinson
(1990). Some of those conceptual models emphasize a par­
ticular aspect of the flow dynamics as for example the
bursting cycle, while others are more ambitious and attempt
to include both the inner and outer structures and their in­
teraction.

Robinson (1991) also lists significant contributions that
utilize structural information to predict statistical quantities
or invoke a simplified form of the governing equations to
model the dynamics of the near-wall turbulence-production
process. Among the predictive models discussed are those
by Landahl (1967; 1980; 1990), Townsend (1976), Perry
and Chong (1982), Perry et al (1986; 1989). Walker and
Herzog (1988), Aubry et al (1988), Hanratty (1989), and
Berkooz et al (1991).

Other, potentially useful, predictive models not dis­
cussed by Robinson (1991) include those based on stability
considerations (Malkus. 1956; 1979). based on the turbu­
lence energy equation (Bradshaw et aI, 1967). based on the
u-u velocity-quadrant statistical description of the organ­
ized motions (Nagano and Tagawa, 1990). and based on a
single hairpin-like vortex in a unit domain of turbulence
production (Bandyopadhyay and Balasubramanian, 1993;
1994). These models account explicitly for Reynolds num­
ber effects and might, therefore. be useful for practical
Reynolds numbers.
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The horseshoes inviscidly induce an outflow of low-speed 
fluid from within the vortex loops, creating motions that 
would be seen by a stationary probe as sharp, intermittent 
spikes of Reynolds stress. Because of the continuous crea­
tion of new vortex loops that replace older elements, the 
lifetime of the vortical array is much longer than that for its 
individual members. According to Black (1968), such or­
ganized structures are responsible for the efficient mass and 
momentum transfer within a turbulent boundary layer. 

Sreenivasan (1987) offers a similar model to that of 
Black (1968). The essential structures of the boundary 
layer, including the hairpin vortices, result from the insta­
bility of a caricature flow in which all the mean flow vor-
tieity has been concentrated in a single fat sheet. 
Sreenivasan's conclusions were briefly discussed in Section 
4 of the present article. 

As a parting remark in this subsection, it might be in­
structive to recall that hairpin vortices play an important 
role also in the laminar-to-turbulent transition of boundary 
layer flows. Essentially, these hairpins are the result of the 
nonlinear tertiary instability of the three-dimensional 
peak/valley pattern which itself is the secondary instability 
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Fig 52. Mean bursting frequency versus Reynolds number (from 
Blackwelder and Haritonidis, 1983): (a) Outer-flow variables scaling; (b) 
Inner-flow variables scaling. The inverted triangles represent three 
additional data points from an untripped boundary layer. 

of the primary Tollmien-Schlichting waves (Klebanoff et 
al, 1962). 

7.3 Reynolds number effects 
The last question to be discussed in this section relates to 
Reynolds number effects on the coherent structures in wall-
bounded flows. There are several facets to that issue and the 
present section is divided into four subsections. To be ad­
dressed below are proper scaling for the period between 
bursts, possibility of profound structural changes after the 
well known Reynolds number limit of Ree = 6000, small-
structures existing in the outer layer, and Reynolds number 
effects on inner structures. 

7.3.1 Bursting period 

Because of the problems of threshold setting and probe 
resolution, bursting frequency and its scaling have become 
the source of continuing controversy. Cantwell (1981), 
based on a review of available literature, have concluded 
that this frequency scales on outer variables, thus establish­
ing a strong link between the inner and outer regions of a 
wall-bounded flow. On the other hand, Blackwelder and 
Haritonidis (1983) have shown that the frequency of occur­
rence of these events scales with the viscous parameters 
consistent with the usual boundary layer scaling arguments. 
Their results obtained with a hot-wire probe whose length 
varied in the range of C+ = 4.5-2015 as the Reynolds 
number increased in the range of Re9 = 1000-10,000 are 

depicted in Fig 52. In Fig 52a, outer variables are used to 
normalize the bursting frequency (or its inverse, the period 
between bursts). The non-dimensional frequency increases 
with Reynolds number, thus clearly indicating that outer 
scaling is not applicable. On the other hand, the same data 
plotted in Fig 52b using the viscous time scale to normalize 
the frequency indicate the validity of inner scaling.16 Thus, 
the properly non-dimensionalized bursting period is inde­
pendent of the Reynolds number, in agreement with the ob­
servations of Kline et al (1967), Corino and Brodkey 
(1969), Donohue et al (1972), Achia and Thompson (1977), 
and Blackwelder and Eckelmann (1978). Blackwelder and 
Haritonidis (1983) have suggested that past erroneous re­
sults are caused by insufficient spatial resolution of the sen­
sors used to detect the bursts. 

Based on measurements in the atmospheric boundary 
layer where the Reynolds number is several orders of 
magnitude higher than in typical laboratory experiments, 
Narasimha and Kailas (1986; 1987; 1990) still maintain that 
bursting events scale on outer variables. To do otherwise, 
the insufficient time resolution of the atmospheric data 
would simply not have allowed the detection of any dy­
namically significant events. Narasimha and Kailas cite 
other laboratory experiments to support their position (eg, 

The upper end of this range might not provide sufficient probe 
resolution according to the criterion established earlier in the present 
paper. 
Three additional data points (inverted triangles) from an untripped 
boundary layer are also shown in Fig 52b. 
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Rao et al, 1977; Ueda and Hinze, 1975; Willmarth, 1975a; 
Shah and Antonia, 1989; Rajagopalan and Antonia, 1984). 

Adding to the present confusion, Bandyopadhyay (1982) 
has shown that the bursting period is not a universal func­
tion and both inner and outer variables are involved in its 
scaling with Ree. He reviewed existing data and concluded 
that a universal value of the bursting frequency scaled with 
either inner or outer variables in various boundary layers 
ranging from relaminarized to separated does not exist. 
Since a turbulent boundary layer is characterized by three 
integral variables, Cf, H, and Re9, verification of universali­
ty with Ree alone is clearly inadequate, and the apparent 
confusion stems in part from the lack of experiments over a 
sufficiently wide range of shape factors H. Johansson and 
Alfredsson (1982) have also suggested that the bursting pe­
riod scale with intermediate scaling proportional to the geo­
metric mean of the inner and outer scales. It should be not­
ed, however, that within the framework of an asymptotic 
theory mixed variables have little or no physical 
significance. 

The arguments by both Blackwelder and Haritonidis 
(1983) and Narasimha and Kailas (1987) are compelling, 
and the issue of scaling of the bursting events must, for the 
moment at least, stay open. The laboratory experiments of 
the former group are well controlled but the range of 
Reynolds numbers and range of shape factors investigated 
are not large enough. The latter group experiments are 
conducted with sufficient probe resolution but the atmo­
sphere can neither be controlled nor fully documented. 
Moreover, the effects of roughness on the scaling is simply 
not known. Controlled high-Reynolds number experiments 
using smooth walls and probes with sufficient resolution 
should settle the question. 

7.3.2 High Reynolds number 
Does the boundary layer structure change when Re6 > 
6x103? The Reynolds number variations of due to Coles 
(1962) were reproduced in the present paper in Figs 13 and 
14 up to values of 15xl03 and 50xl03, respectively. Fig 13 
does suggest that an asymptotic state is reached approxima­
tely when Ree > 6x103. But, the higher Reynolds number 
data in Fig 14 shows that beyond that limit, At/1" drops, 
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although very slowly compared to the rise rate for Ree < 
6xl03. The gradual departure of AC/1" from the apparent low 
asymptote suggests that some new effects are appearing in 
the turbulence production process at approximately Re9 > (6 
to 15)xl03. Experiments conducted in several different fa­
cilities are briefly described below and they show that pro­
found changes in the coherent structures of different wall-
bounded flows might indeed take place at very high 
Reynolds numbers. 

Relevant to the issue of structural changes when Ree > 
6x103, is the recent assertion by Kailasnath (1993) that the 
skin friction, the pressure fluctuations and the mean-
velocity profiles all show a distinct change of behavior at 
about the same Reynolds number. For example, a power-
law fit to existing skin-friction data for both boundary 
layers and pipe flows17 indicates a break point, at Re9 « 
5000, that separates two ranges of Reynolds numbers. This 
and other evidence prompted Kailasnath (1993) to propose 
a transitional behavior for wall-bounded flows from a low-
to a high-Reynolds number regime and to suggest further 
that the turbulence regeneration mechanism is different in 
the two regimes. 

The results of Head and Bandyopadhyay (1981) dis­
cussed earlier indicate that the hairpin structures exhibit 
strong dependence on Reynolds number for Ree < 7000, and 
hence the hairpins are atypical. At higher Reynolds num­
bers, on the other hand, the hairpin vortex is found unam­
biguously. In Head and Bandyopadhyay's view, Falco's 
(1977) typical eddies are merely the longitudinal cross-sec­
tions of the tips of the hairpins. Perry and Chong (1982) and 
Perry et al (1986) concur with this view. Their model of the 
turbulent boundary layer emphasizes a hierarchy of hairpin 
eddies as the essential structure of the outer region. In 
wavenumber space, the analogous idea of a hierarchy of in­
teracting scales and energy transfer from large eddies to 
smaller ones is, of course, not new and has been proposed 
as early as 1920 by Richardson18 and formalized by 
Kolmogorov (1941 a). 

Turbulent boundary layers ranging from relaminarized to 
separated cover the entire range of possible shape factor H. 
The statistical properties of the turbulent/irrotational fluid 
interface as well as the bursting period in such diverse 
layers can be described by H (Fiedler and Head, 1966; 
Bandyopadhyay, 1982). As can be expected, the location of 
the maximum deviation of the mean velocity from the 
logarithmic law also correlates with the mean location of 
the intermittent layer. Changes in the properties of the inter­
mittent layer can take place when//drops below 1.3, that is 
approximately when Ree > lOxlO3. This is supported by the 
flow visualization results of Head and Bandyopadhyay 
(1981) at Re9 = 17.5xl03, which shows that the outer part of 
the boundary layer is noticeably sparser: fewer of the hair-

yld 

Fig 53. Comparison of the shear correlation coefficient in a high- and a 
low-Reynolds number boundary layers (from Smits, 1990). 

The pipe Reynolds number based on its radius and the centerline 
velocity could be related to an equivalent Reynolds number based on the 
momentum thickness. 

1 8 Richardson's (1920; 1922) poetic description (widely recited but often 
misquoted) of the turbulent eddies within a cumulus cloud reads: Big 
whirls have little whirls that feed on their velocity, and little whirls have 
lesser whirls and so on to viscosity. 
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Fig 54. Comparison of the intermittency factor in a high- and a low-
Reynolds number boundary layers (from Smits, 1990). 

pin vortices reach 8 although more of them are produced 
per unit (dimensional) wall area. Figure 53, which shows 
the variations of the shear correlation coefficient across a 
subsonic boundary layer and a supersonic one, seems also 
to echo that, as the Reynolds number is drastically 
increased, u- and u-fluctuations are not as well correlated in 
the outer layer, Note that the trends in this figure are 
primiraly due to changing the Reynolds number; the effect 
of varying the Mach number has already been accounted for 
by considering local fluid properties. 

In high-speed, high-Reynolds number turbulent boundary 
layers, the mean location of the intermittent layer and its 
standard deviation change significantly according to the 
results of Owen et al (1975) at MM = 7.0 and Ree = 85xl03. 
This is shown in Fig 54, where the supersonic data are 
compared to the low-Reynolds number, low-Mach number 
results of Klebanoff (1954). The intermittency profile for 
the supersonic boundary layer is clearly fuller. Furthermore, 
at these high Reynolds numbers, the boundary layer 
structures do not exhibit much overturning motion which is 
typical of lower Reynolds numbers. In the statistical 
measurements of conventional boundary layer properties at 
high Reynolds numbers these changes may not always seem 
dramatic, but their critical importance might lie in the 
efficiency of outer-layer or other control devices for drag 
reduction (Section 8.3.1). 

Morrison et al (1971) compared the sublayer spectra, 

P\k^ ,co+), at low- and high-Reynolds number pipe flows. 

Their results are depicted in Figs 55 and 56.19 Over a 
sufficiently wide range of Reynolds numbers, the shape of 
the two-dimensional spectra expressed in wall-layer 
variables is not universal. This result contradicts the earlier 
low-Reynolds number, one- and two-dimensional spectral 
observations made by Bakewell and Lumley (1967) and 
Morrison (1969). As the Reynolds number is increased from 
Rea = 10,000 to 100,000, more energy appears in the low-
frequency, low-wavenumber region. The additional energy 
results from disturbances which convect at twice the 
characteristic velocity of the sublayer of 8UX. The high 
Reynolds numbers appear to have the effect of randomizing 
the phase velocity whereby the disturbances are no longer 

" Although the spectra in Fig 56 were measured outside the viscous 
sublayer (at y+ = 13.9), Morrison et al (1971) argue that the energy 
distribution at the sublayer edge is not substantially different from the 
distribution within the viscous sublayer. 

phase-correlated in the sublayer. This additional evidence 
also suggests much change in the turbulence production 
mechanism at very high Reynolds numbers. In fact, 
Morrison et al (1971) have strongly suggested that the low-
speed streaks are unique to low-Reynolds number wall-
bounded flows. Streaks would no longer appear at very high 
Reynolds numbers, where a phase-correlated, wave-like 
turbulence might not exist within the viscous sublayer. 

Using a rake of X-wires and conditional averaging 
techniques, Antonia et al (1990) have examined the effects 
of Reynolds number on the topology of the large structures 
in the range 1360 < Ree < 9630. The instantaneous 
longitudinal sectional streamlines in a moving frame of 
reference contain many rotational structures 0[S/2] at the 
lowest Reynolds number. Very significant Re9 effects can 
be observed in the instantaneous frames (see their Fig 5). 
As Ree is gradually increased to 9630, the large rotational 
structures become much smaller and no longer dominate the 
outer layer. When the large structures are selectively 
sampled and averaged, their foci are found to be more 
circular at lower Reynolds numbers. As Ree is increased 
from 1360 to 9630, the location of the foci moves closer to 
the wall from 0.835 to 0.785. This is consistent with the 
effect of Reynolds number on the mean location of the 
intermittent layer, for similar values of the shape factor H 
(Fiedler and Head, 1966). 

7.3.3 Small structures in outer layer-
In this subsection, a relation is developed relating the ratio 
of outer to inner scales to Reynolds number changes. 
Reynolds number effects on small structures existing in the 
outer layer are then discussed. Finally, brief remarks are 
made on vortex-vortex interaction in the outer region. 

The boundary-layer thickness in wall units, 5+,20 is 
related to the Reynolds number Ree via the skin-friction 
coefficient and the ratio of boundary layer thickness to 
momentum thickness: 

S+=-
877 <7 8 

um e 
Re„ 

5 + . | r L | T . i . R e ( 
0 

(35) 

(36) 

For a smooth flat plate, an approximate empirical relation 
can be obtained by using the modified pipe resistance 
formula viz cf = 0.0296 (Rer)"

1/5 and the l/7th-power-Iaw 
velocity profile. The ratio of the outer scale to inner scale is 
thus given by: 

5+= 1.168 (Ree)
0-875 (37) 

Figure 57, taken from Bandyopadhyay (1991), shows that 
Eq 37 describes the data over the entire Reynolds number 
range where measurements are available. 

™ The notation Re is also used as discussed in Section 3. 
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Falco (1977) used simultaneous hot-wire anemometry 
and flow visualization to measure the characteristic 
dimensions of the typical eddy in the outer region of a 
boundary layer (Cx and C ; see insert in Fig 58). His 
conclusion is that while large eddies appear to be Reynolds 
number independent, the typical eddies do depend on the 
Reynolds number. 

Figure 58, taken from Bandyopadhyay (1991), shows a 
compilation of data from widely different physical as well 
as numerical experiments. The emphasis is on Reynolds 
number effects on organized small scales in the outer layer. 
Equation 37 is used to rescale Bushnell et aFs (1975) 
compilation of the variation of the maximum mixing length 
{(.) with Reynolds number, shown by the shaded area in Fig 
58. The streamwise and normal characteristic dimensions of 
the typical eddy, Cx and Cy, are obtained from Falco's 
(1977) experiments referenced above. This data is 
represented respectively by the broken and solid lines in Fig 
58. Data for the Taylor's streamwise and normal micn> 

are probably also equal to XJ8 and CJ8. This does not 
necessarily imply an approach to isotropy, but rather that 
x-y and x-z sections of the same hairpin vortex are being 
observed. 

Smits et al (1989) and Smits (1990) have compared a 
supersonic (Ree = 80x103) and a subsonic (Re9 = 5xl03) 
turbulent boundary layer, which comparison primarily 
reflects the effect of Ree and not M^ . In the high-Reynolds 
number flow, for y/5 > 0.25, the peak value of the shear 
correlation coefficient RHU is lower than the corresponding 
value in the low-Reynolds number flow, for example by 
40% at y/5 > 0.65 (see Fig 53). Comparison of the 
probability density function shows that for y/5 > 0.25, the 
vertical component of the Reynolds-stress-contributing 
motion is weaker in the Re9 high case. 

If the Reynolds-stress-production module is qualitatively 
unchanged, the drop in the coefficient RHU, referred 
henceforth to the peak value, represents a disproportionate 
increase in the denominator. A large drop in the value of 

scales, Xx and Xy, are compiled by Falco (1974) and ^ o / o u l d happen if the turbulence becomes partially 

indicated here by the slanted dashes. Finally, the range of 
variation of the diameter, d, of the characteristic hairpin 
near the edge of the boundary layer is computed from 
Spalart's direct numerical simulations by Robinson (1990). 
This is indicated in Fig 58 at a single Reynolds number by 
the open circle and the error bar. The large variability of 
the vortex diameter in the simulations is intriguing. All 
scales are normalized with the appropriate boundary layer 
thickness, S. At Ree > lOxlO3, the characteristic size of all 

the organized small structures appear to asymptote to the 
value of the maximum mixing length: 

y s « y s « cjh *cy/8*(e /s;max (38) 
In the same range of Reynolds numbers, the above scales 

stochastic whereby u and u are decorrelated while the 
kinetic energy production continues to contribute to the rms 
values of u and u. But since such a situation will come 
largely due to high-frequency components which do not 
have much energy, the decreased R(iD must come from an 
increased contribution from the large scales which are 
energetic but are unable to produce turbulence. The growth, 
at higher Reynolds numbers, of an approximately flow-
aligned, large-scale swirling motion in the cross-stream 
plane in the outer part of the boundary layer satisfies this 
requirement. Long time two-dimensionality requires that 
swirls of both signs be produced. The development of the 
swirl suggests an increase in the v> and w-turbulence. Since 
the outer layer w-turbulence intensity in supersonic 
boundary layers still scales with y/5 exactly as at low Re9 
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Fig 55. Two-dimensional spectra P\kt,C0+ ) for Refl = 10,000; 

y+ = 1.56 (from Morrison et al, 1971). 
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Fig 56. Two-dimensional spectra P\k^ , C0+ ) for Rea = 100,000; 

y+ = 13.9 (from Morrison et al, 1971). 
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(Smits 1990), the lower RH0 is attributable to increased u-
turbulence only. Accordingly, in the cross-stream plane, the 
u- and w- motions must be correlated over distances 0[S] at 
high Reynolds numbers. With increasing Reynolds num­
bers, the vortex-vortex interactions in intra- and inter-
hairpin vortices could lead to the formation of such new 
scales described as double helix and tornadoes, respec­
tively, in Bandyopadhyay (1989). 

The sequence of photographs in Fig 59 shows that 
double-helix spiraling of a hairpin vortex in a turbulent 
boundary layer can indeed take place. The smoke-filled 
flow is illuminated with a sheet of laser inclined upstream 
at 45° to the flow direction, and the Reynolds number is 
approximately Re9 = 600. At this low Reynolds number, a 
typical vortex loop has a relatively low aspect ratio and 
vortex stretching is not pronounced. Nevertheless, the 
photographs in Fig 59 adequately illustrate the pheno­
menon. Increased vortex stretching and vortex-vortex 
interaction could cause a hairpin vortex to first spiral 
around itself into a double helix and then onto further 
spiraling between neighboring double helixes. The process 
contributes to crinkling and increase in surface area of the 
vorticity layer. The hierarchies of spiraling leading to many 
miniature tornadoes continues as long as they contribute to 
enstrophy amplification. These special behaviors become 
more pronounced as the Reynolds number is increased. As 
the double helix crosses the static light plane, the cross-
section moves wall-wards and the direction of the inner 
induced-flow rotates. In this example, the maximum vortex 
diameter happens to be the same as the maximum mixing 
length and it decreases in size both as y-> 0 and_y-> 8. 

7.3.4 Inner structures 
In this subsection, Reynolds number effects on the inner 
structures are discussed. It will be argued that vortex 
stretching is enhanced at higher Reynolds numbers, and that 
the low-speed streaks, commonly observed in low-Reynolds 
number experiments, might become less important at higher 
speeds. 

Wei and Willmarth (1989) have argued that in turbulent 
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Fig 57. Reynolds number dependence of ratio of outer to inner scale. The 
straight line is computed from modified pipe resistence formula and power-
law mean-velocity profile. Data compiled by Bandyopadhyay (1991) from 
different experiments. 

channel flow literature where an inner-layer scaling has 
been claimed to hold errors have crept into measurements 
which are ascribable to large invasive probes, and that 
sometimes small but systematic variations with Reynolds 
number have been overlooked because such a scaling was 
assumed a priori. Their measurements, described previous­
ly in Section 6 of the present article, show that 
Mrms IU% turbulence intensity scales on inner variables only 
up to y+ » 10 which is well inside the inner region. The 
urms^r turbulence intensity and the Reynolds shear stress 

- wo/^distributions do not scale on inner variables 
anywhere in the channel. Interestingly, the maximum 
normalized Reynolds stress and normal turbulence intensity 
increase with Reynolds number. This they attributed to the 
enhancement of the vortex-stretching mechanism in the 
inner region with increasing Reynolds number. 

Since the Reynolds number Rea or Re9 is a dimension-
less grouping of outer variables, failure of the turbulence 
quantities in the inner region to scale only on inner vari­
ables is an indication that the dynamics of the inner region 
structure are affected by outer as well as inner variables. 
Wei and Willmarth argue that these Reynolds-number de­
pendencies are caused by changes in the coherent structure 
of the turbulence close to the wall, and that the turbulent 
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Fig 58. Reynolds number variation of maximum mixing length, typical 
eddy and Taylor's micro-scale lengths. The single data point in the figure 
indicates range of hairpin diameters detected at edge of directly simulated 
boundary layer. The curves are fairings of experimental results. Data 
compiled by Bandyopadhyay (1991). 
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Fig 60. Reynolds number effects on viscous drag reduction due to OLD for
25005; Reg 5; 18,000 (from Anders, 1990a).

Morrison et aI (1971) have studied the organized motion
in the sublayer region of a pipe flow. As discussed in
Section 7.3.2, they have measured the two-dimensional fre­
quency-wavenumber spectra of the longitudinal velocity
fluctuations at 10.6xl03 ~ Rea ~ 96.5xl03• An appeal of this
data lies in its long-time averaged statistical nature and the
absence of any troublesome subjective threshold setting as
used in VITA or VISA techniques. For Rea < 30xl03, the

streamwise phase velocity c; in the sublayer is independent
of wavenumber and remains a constant throughout the
sublayer. Since this constant velocity co·ordinates the phase
of the periodic motions at different wall-normal locations,
Morrison et al concluded that the sublayer turbulence is
wave-like and in fact at low Reynolds numbers it is likely
that the sublayer consists of relatively periodic waves.

The critical-layer height is estimated to be 9vlUt because

at that location the average fluid velocity equals c; =8. At
Rea < Rec =30xlO3, the characteristic spanwise wavelength

)..,: of 135 agrees with Kline et aI's (1967) streak-spacing
estimate of 130. However, for Rea> Rec' the frequency­
wavenumber spectra for the laterally spaced points loose
their universal shape and the relative amount of low-

frequency, low-wavenumber (k;) energy increases with

Reynolds numbers (see Figs 55 and 56). This additional
energy which becomes significant at higher Reynolds
numbers results from disturbances which convect at
velocities much greater (the average being 16Ut ) than the

characteristic sublayer velocity of BUt • This led Morrison et

aI (1971) to conclude that at higher Reynolds numbers, the
character of the sublayer will be substantially altered, with
an increasing amount of low-frequency, low-wavenumber
energy being introduced. The disturbances responsible for
this additional energy have propagation velocities much

a

c

b

e

d

Fig 59. Smoke-filled turbulent boundary layer illuminated using a laser
sheet inclined upstream at 45° to flow direction. Arrows in sequence of four
photographs show double-helix spiraling of a hairpin vortex (from
Bandyopadhyay, 1989).

flow structure at high Reynolds number near solid bounda­
ries, ie the hairpin vortex structure and interactions, will
differ significantly from lower-Reynolds number inner
structures.
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larger than that which characterizes the sublayer at low 
Reynolds numbers. The "streaky" structure which has been 
assumed to be characteristic of the sublayer will become 
less important as the Reynolds number is increased and it is 
probable that the "streaks" may not be apparent at all at 
sufficiently large values. 

By trial and error, Walsh (1990) has optimized the di­
mensions of drag reducing V-groove riblets (h+ = s+ =12, 
where h and s are the riblet height and spanwise spacing, 
respectively) at low Reynolds numbers (Ree < 6xl03). The 
value of s+ does not scale with the spanwise mean-streak-
spacing X+ (« 100). The findings of Walsh et al (1989) and 
Walsh (1990) that the riblet performance does not change at 
transonic speeds and high Reynolds numbers (Mm = 0.7; 

20xl03 S Re6 < 50xl03) does not, therefore, invalidate 
Morrison et al's (1971) conclusion that the low-speed 
streaks will gradually become unimportant at high Reynolds 
numbers. 

Grass (1971) investigated the nature of inner/outer 
interaction in smooth as well as rough wall-bounded flows. 
He maintains that the essential features of this interaction 
do not change despite the presence of three-dimensional 
roughness elements that protrude as much as 80 wall units 
into the inner layer, well outside the viscous region. Since 
low-speed streaks are not observed on walls with three-
dimensional roughness, Grass' results minimize the 
importance of the streaks in the maintenance of turbulence. 

A related issue is the importance of the intense but rare 
bursting events at high Reynolds numbers. A partial answer 
is given by Kailasnath (1993) who used a statistical 
approach to obtain useful information on the structure of the 
instantaneous momentum flux, thus sidestepping analysis 
conditioned on specific episodes and focusing instead on 
the contribution to the momentum flux associated with 
various magnitudes of velocity fluctuations. Kailasnath's 
non-episodic approach reveals that the contribution to the 
flux is dominated by medium amplitude velocity 
fluctuations in the range of ±l.5u', which are not rare 
events. This implies a diminishing importance of the rare, 
intense events taking place in a progressively shrinking 
near-wall region as the Reynolds number increases. -

8. FLOW CONTROL 

8.1 Introductory remarks 

The ability to actively or passively manipulate a flow field 
to effect a desired change is of immense technological 
importance. The term boundary layer control includes any 
mechanism or process through which the boundary layer of 
a fluid flow is made to behave differently than it normally 
would were the flow developing naturally along a smooth 
flat surface. The topic has been reviewed by, among others, 
Bushnell (1983), Bandyopadhyay (1986b), Wilkinson et al 
(1988), Bushnell and McGinley (1989), Gad-el-Hak (1989; 
1990; 1993), Bushnell and Hefner (1990), Fiedler and 

Fernholz (1990), and Gad-el-Hak and Bushnell (1991). A 
boundary layer could be manipulated to achieve transition 
delay, separation postponement, lift enhancement, drag 
reduction, turbulence augmentation, or noise suppression. 
These objectives are not necessarily mutually exclusive. For 
example, by maintaining as much of a boundary layer in the 
laminar state as possible, the skin-friction drag and the 
flow-generated noise are reduced. However, a turbulent 
boundary layer is in general more resistant to separation 
than a laminar one. By preventing separation, lift is 
enhanced and the form drag is reduced. An ideal method of 
control that is simple, inexpensive to build and operate, and 
does not have any trade-off does not exist, and the skilled 
engineer has to make continuous compromises to achieve a 
particular goal. 

Of all the various types of shear flow control now extant, 
control of flow separation is probably the oldest and most 
economically important. The tremendous increases in the 
capability of computational fluid dynamics, which have 
occurred as a direct result of increases in computer storage 
capacity and speed, are transforming flow separation 
control from an empirical art to a predictive science. 
Control techniques such as mitigation of imposed pressure 
gradients, blowing and suction are all readily parameterized 
via viscous CFD. Current inaccuracies in turbulence 
modeling can severely degrade CFD predictions once 
separation has occurred, however the essence of flow 
separation control is the calculation of attached flows, 
estimation of separation location, and indeed whether or not 
separation will occur, tasks which CFD can in fact perform 
reasonably well within the uncertainties of the transition 
location estimation. 

Techniques to reduce the pressure drag are more well 
established than turbulent skin-friction reduction tech­
niques. Streamlining and other methods to postpone 
separation can eliminate most of the pressure drag. The 
wave and induced drag contributions to the pressure drag 
can also be reduced by geometric design. 

The skin friction constitutes about 50%, 90%, and 100% 
of the total drag on commercial aircraft, underwater 
vehicles and pipelines, respectively. Most of the current 
research effort concerns reduction of skin-friction drag for 
turbulent boundary layers. For that purpose, three flow 
regimes are identified. First, for Rev < 106, the flow is 
laminar and skin friction may be lowered by reducing the 
near-wall momentum. Adverse pressure gradient, blowing 
and surface heating/cooling could lower the skin friction, 
but increase the risk of transition and separation. Secondly, 
for 106 < Rev < 4xl07, active and passive methods to delay 
transition could be used, thus avoiding the much higher 
turbulent flow drag. Thirdly, at the Reynolds number 
encountered after the first few meters of a fuselage or a 
submarine, methods to reduce the large skin friction 
associated with turbulent flows are sought. These methods 
are classified in the following categories: Reduction of 
near-wall momentum; introduction of foreign substance; 
geometrical modification; relaminarization; and synergism. 
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The second category above leads to the most impressive 
results. Introduction of small concentration of polymers, 
surfactants, particles or fibers into a turbulent boundary 
layer leads to a reduction in the skin-friction coefficient of 
as much as 80%. Recently introduced techniques mostly fall 
under the third category above and seem to offer more 
modest net drag reduction. These methods are, however, 
still in the research stage and include riblets (~8%), large 
eddy breakup devices (or outer-layer devices, OLD) 
(-20%), and convex surfaces (-20%). 

The knowledge of the Reynolds number effects is useful 
to flow control. This is because experimental investigations 
at low Reynolds numbers, ie lower speeds and/or smaller 
length scales, are less expensive. Most flow control devices 
are, therefore, developed and tested at rather low Reynolds 
numbers, say Re9 = 1000. Extrapolation to field conditions 
is not always straightforward though, and it often comes to 
grief. While the riblets results seem to extrapolate favorably 
to field conditions, the verdict on OLD is disappointing. 
These points will be discussed in Sections 8.2 and 8.3. 

8.2 Riblets 

Properly optimized, longitudinally grooved surfaces, called 
riblets, could lead to a modest skin-friction drag reduction, 
in the range of 5-10%, in turbulent boundary layers. The 
subject dates back to the mid 1960s but has attracted much 
attention during the 1970s and 1980s. Walsh (1990) 
provides a recent up-to-date review. The exact mechanism 
through which riblets achieve net drag reduction despite the 
substantial increase in wetted surface area is still 
controversial. For the present purpose, however, the issue of 
Reynolds number effects on riblets performance is more 
pertinent. Flight tests and transonic tunnel experiments all 
indicate that the inner variables are the proper scaling for 
the dimensions of the riblets, as discussed in Section 7.3.4. 

Choi's (1989) spectrum measurements show that the 
energy of skin-friction fluctuations in the riblet groove 
drops by a decade compared to that of the smooth surface 
over more than a decade of the flow frequency range. 
Typically, over time expressed in wall units of C+ = 170, 
the skin friction in the groove can remain below average 
and at a quiescent state as if the fluid in the groove is 
partially relaminarized. The dye flow visualization of 
Gallagher and Thomas (1984) also shows that the tracer 
remained quiescent and viscous-pool like between the ribs 
and it leaves the groove only when a burst passes overhead. 
Like Gallagher and Thomas, Narasimha and Liepmann 
(1988) have also suggested that the riblets create pools of 
slow viscous flow in the valleys, and thereby modify the 
interaction of the wall flow with the outer flow. Black 
(1968) has analytically described the dynamics of the mean-
velocity profile of a canonical turbulent boundary layer in 
terms of a periodic competition between the wall and outer 
layers whereby the thickness of the sublayer changes with 
phase. The maximum thickness of the sublayer that the 
outer layer will allow can be obtained from the 
extrapolation of the log law to the sublayer profile. 
Consider the equality: 

LT = y+ = 2.41 ln(y+) + 5.4 (39) 

This is given by v+ = 11, which is nearly the same as the 
optimized riblet height. 

In a recent paper, Choi et al (1993) used direct numerical 
simulations to study the turbulent flow over a riblet-
mounted surface. Quadrant analysis indicates that drag-
reducing riblets mitigate the positive Reynolds-shear-stress-
producing events. Choi et al suggest that riblets with 
sufficiently small spacing reduce viscous drag by restricting 
the location of the streamwise vortices above the wetted 
surface such that only a limited area of the riblets is 
exposed to the downwash of high-speed fluid induced by 
these vortices (see also the corroborating numerical results 
of Kravchenko et al. 1993). 

Once it is accepted that the riblet performance is 
unrelated to streaks, it comes as no surprise that sand-grain 
roughness also has a drag-reducing behavior exactly like 
riblets. Tani (1987; 1988) has reanalyzed Nikuradse's 
(1933) experimental data on sand-grain roughness and has 
shown that its performance also changes from drag reducing 
to drag increasing with increasing h+, where h is the 
characteristic roughness height. The skin friction remains 
lower than that of the smooth wall for h+ < 6. Compared to 
the optimized riblets, the drag reduction is lower in 
magnitude, but is still of the same order. Tani has also 
suggested that the mechanism of drag reduction is likely to 
originate in the nearly quiescent regions of the flow within 
the interstices of the roughness elements, as observable 
deep within riblets. 

Grass (1971) has shown in a channel flow that the inrush 
and outrush phases of the production cycle are also present 
when the wall has a three-dimensional roughness. Note, 
however, that walls with three-dimensional roughness 
elements do not have smooth, wave-like low-speed streaks, 
and although the outer-layer structure is similar to that in a 
smooth wall, the near-wall stress flux has a different 
behavior (Bandyopadhyay and Watson, 1988). 

8.3 Recovery response 

There are at least two modes of interaction between the 
inner and outer regions of a boundary layer. In the first, the 
outer structures obtain at least part of their energy by 
convection and turbulent transport from the inner region of 
the upstream part of the boundary layer. This view is 
supported by the near-constancy of the ratio between 
turbulence stress and twice the turbulence kinetic energy, 

-uv/q2 , across a major portion of the boundary layer. 
This is true even in the wake region, ie, y/8 > 0.2, where 
both the Reynolds stress and the rms velocity fluctuations 
are rapidly decreasing. According to Townsend (1976), the 
turbulent fluid in that region has been sheared sufficiently 
long to attain its equilibrium structure. The second mode of 
inner/outer interaction involves the pressure effects of the 
inactive motion. Compared to the convective mode, the 
pressure mode is much less extended in the streamwise 
direction. In other words, the first mode points towards long 

Downloaded From: http://appliedmechanicsreviews.asmedigitalcollection.asme.org/ on 09/20/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



352 Gad-el-Hak and Bandyopadhyay: Wall-bounded turbulent flows Appl Mech Rev vol 47, no 8, August 1994 

memory while the second is associated with short memory. 
This may be relevant to the performance of different control 
devices as discussed in the following two subsections. 

8.3.1 Disturbances in outer layer 

The long memory associated with the outer structure 
dependence on upstream conditions contrasts the short 
memory of the inner region. This was demonstrated by 
Clauser (1956) who has shown that in a turbulent boundary 
layer at a given Reynolds number, disturbances survive 
much longer in the outer layer (y/5 > 0.2) than in the inner 
layer. He demonstrated this by placing a circular rod in the 
outer and inner regions of a fully-developed wall layer. For 
the rod placed at y/5 = 0.16, the decay of the maximum 
deviation of the distorted mean-velocity profile from the 
equilibrium value was reduced to half of its initial value at 
a downstream distance of 28. In contrast, the outer-layer rod 
at y/b = 0.6 caused a distortion in the velocity profile that 
lasted four times longer, 85, and that did not completely 
disappear even at 168 downstream of the rod (see Fig 13 of 
Clauser's article). Note that Clauser (1956) compared the 
response of the inner and outer layers at a low Reynolds 
number and did not consider any Reynolds number effect. 
Incidentally, some consider Clauser's demonstration as the 
predecessor of the modern day drag-reduction experiments 
employing modifications to the outer layer (Bushnell and 
Hefner, 1990). 

In viscous drag reduction techniques where a device drag 
penalty is involved, as with outer-layer devices (OLD), a 
recovery length -1008 is desirable to achieve a net gain. To 
date, drag reduction has been achieved only at low 
Reynolds numbers, Re9 < 6xl03 (Anders, 1990a). However, 
when Anders examined his outer-layer devices at higher 
Reynolds numbers, to his surprise, the drag reduction 
performance was reduced and the device was no longer a 
viable candidate for viscous drag reduction. Anders' 
measurements in the range of Reynolds numbers of 2500 < 
Ree< 18,000 are depicted in Fig 60. The experiments were 
conducted by towing a slender, axisymmetric body jn a 
water channel. The outer-layer device used in Fig 60a 
consists of two NACA-0009 airfoil-section rings placed in 
tandem 1.5 m downstream of the nose of the 3.7-meter-long 
body. The second device used in Fig 60b consists of two 
Clark Y low-Reynolds number airfoil-section rings, again 
placed in tandem. Both devices were optimized to yield 
lowest skin friction downstream. The figure depicts the 
downstream trends of the local skin friction, normalized 
with the skin friction at the same location but without the 
OLD. 

Although both devices used by Anders (1990a) 
consistently lead to lower skin friction at all Reynolds 
numbers tested, net drag will, of course, be increased by the 
device drag penalty. This penalty depends on, among other 
factors, the thickness and angle of attack of the device, 
whether the boundary layer on the device itself is laminar, 
transitional or turbulent, and the presence and extent of any 
separation bubble that might form on the outer-layer 
ribbon/airfoil. Anders (1990a) reports a very modest net 

drag reduction for his airfoil devices of around 2% at the 
lowest Reynolds number but a net drag increase of 1-5% at 
higher Reynolds numbers. 

Bandyopadhyay (1986a) used a large-area drag balance 
to investigate systematically the Reynolds number effects 
on both single- and tandem-ribbon devices. His Reynolds 
number range of 1300 < ReG < 3600 (5xl05 < ReL < 
1.8xl06) is lower than that of Anders' (1990a) but the loss-
of-performance trends are the same as shown in Fig 61. In 
here, the net drag reduction as a percentage of the reference 
drag is plotted as a function of Reynolds number, ReL, 
based on the freestream speed and the total length of the flat 
plate. Note that the drag penalty for the thin-ribbon devices 
used by Bandyopadhyay should be far smaller than that for 
the airfoil devices used by Anders. We conclude that for 
both low Re9 (< 6xl03) and high Re9 (> 6xl03), the 
effectiveness of OLD diminishes with the increase of 
Reynolds number. 

The continued drop in the skin-friction reduction with 
Reynolds number comes as a surprise because the mean 
flow analysis of Coles (1962) indicates an asymptotic state 
of the outer layer to have been reached above Ree > 6x103. 
The slow drop in AU+ does not start until Re6 > 15,000 (see 
Figs 13 and 14). Anders (1990a) attributed the ^repro­
ducibility of the low-Reynolds number behavior at higher 
values to a significant change in the turbulence structure at 
higher Ree as discussed by Head and Bandyopadhyay 
(1981). The structural changes as the Reynolds number 
increases provide a simple explanation for the performance 
deterioration of outer-layer devices. These devices 
presumably work by selectively suppressing the normal 
velocity fluctuations and thus decorrelating the streamwise 
and normal velocities. As discussed in Section 7, at high 
Reynolds numbers, fewer hairpin vortices reach the edge of 
the boundary layer because of increased interactions among 
these vortices. The overturning motion of the large eddies 
observed at low Reynolds numbers is less at higher 
Reynolds numbers, which reduces the u-turbulence 
suppression role for the OLD. 

8.3.2 Disturbances close to wall 
It is clear from the preceding subsection that knowledge of 
Reynolds number effects on the mean turbulent flow alone 

Or 
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Fig 61. Large-area drag balance measurements showing Reynolds number 

effects on viscous drag reduction due to outer layer devices for 1300 < Reg 

< 3600 (from Bandyopadhyay, 1986a). 
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does not allow one to address all practical problems. This 
can be further demonstrated in the post-transition 
unexpected result alluded to in Section 2.3. Klebanoff and 
Diehl (1952) have made measurements on artificially 
thickened boundary layers at zero pressure gradient. The 
first 60 cm of their splitter plate was covered with No. 16 
floor sanding paper. The measurements were carried out 
over a length of 320 cm at freestream velocities of 11, 17 
and 33 m/s, giving three ranges of Reynolds numbers and 
producing a maximum Ree of 14,850. The Reynolds 
number Re9 at the end of the sand roughness (at x = 60 cm) 
was 2640, 4050, and 7990 at the three above mentioned 
speeds, respectively. Figure 62 shows the recovery response 
of the turbulent boundary layer to the same wall disturbance 
(meaning the same sand roughness) at the three different 
reference Reynolds numbers (that is freestream speeds). 
One normally expects the recovery from wall disturbances 
to be the quickest (in x ) at the highest Reynolds numbers. 
Therefore, it comes as a surprise that, in contrary, the return 
to the apparent "equilibrium" state (given by the broken 
line in Fig 62) is clearly slowed down as the reference 
Reynolds number is increased and not decreased! Note that 
at [/«, = 33 m/s, 5 = 2.54 cm at x = 60 cm, that is 
immediately after the sand roughness. Figure 62 shows that 
even at the last station where x = 320 cm and Ax/S =100, 
the recovery is not yet complete. The recovery length in 
the figure for an incoming Re9 of about 8x103 for the near-
wall disturbance case is similar to the outer-layer 
disturbance case shown in Fig 60 at a similar Reynolds 
number. This puzzling behavior leads to the question: why 
are the near-wall transition-trip disturbances suiyiving 
even beyond an x/5 of 100 at such high Reynolds numbers 
as 15xl03 much like it is known for outer-layer devices at 
much lower Reynolds numbers? This question is clearly 
important to model testing in wind tunnels and code 
validation data, where roughness is used to trip and thicken 
the boundary layer to simulate high Reynolds numbers or 
flight conditions (Bushnell et al, 1993). 

8.4 Control of high-Reynolds number flows 

The above discussion indicates that post-transition memory 
is longer at higher Reynolds numbers for certain trips. 
Wall-layer control may, therefore, have a long-lasting 

/ 
• " 

10X103 

Fig 62. Approach to equilibrium after tripping device at moderately high 
Reynolds numbers (from Coles, 1962). 

effect, say O[1005], if applied during transition. On the 
other hand, as per Clauser (1956), if the wall control is 
applied in the fully-developed turbulent region of the flow, 
the effect does not last long. The relevance of Reynolds 
number effects to flow control is particularly telling in case 
of full numerical simulation because it is currently limited 
to Reynolds numbers that are not that far from transitional 
values. 

It is instructive to recall in here typical Reynolds 
numbers encountered in the laboratory and in the field. 
Other than a handful of large-scale facilities (see Section 
5.4), boundary layers generated in wind tunnels and water 
tunnels typically have Reynolds numbers of Ree = O[1000]. 
A commercial aircraft traveling at a speed of 300 m/s at an 
altitude of 10 km would have a unit Reynolds number of 
107/m. Due to the much smaller kinematic viscosity of 
water, a nuclear submarine moving at a modest speed of 10 
m/s (« 20 knots) would have the same unit Reynolds 
number of 107/m. This unit Reynolds number translates to a 
momentum thickness Reynolds number near the end of 
either vehicle of roughly Ree = 300,000. The Reynolds 
number on the space shuttle is as high as Re9 = 430,000, on 
an aircraft carrier can have a maximum of Re6 = 1.5xl06, 
and in the atmospheric boundary layer is typically Re9 = 
106-107. These ranges of Reynolds numbers together with 
the scopes of operation of typical wind and water tunnels, 
direct numerical simulations and three large-scale facilities, 
the National Transonic Tunnel, NASA-Langley towing tank 
and the super-pipe, are schematically shown in Fig 1, 

It is clear from the discussion thus far in this section and 
from the strong Reynolds number effects on the mean flow, 
higher-order statistics and coherent structures demonstrated 
in Sections 5-7, that control devices developed and tested in 
the laboratory can not in general be readily extrapolated to 
field conditions. Detailed knowledge of high-Reynolds 
number consequences is required prior to attempting to 
control practical wall-bounded flows. 

9. NUMERICAL SIMULATIONS 

9.1 General remarks 

The principles of conservation of mass, momentum and 
energy govern all fluid motions. In general, a set of partial, 
nonlinear differential equations expresses these principles 
and together with appropriate boundary and initial 
conditions constitute a well-posed problem. For a turbulent 
flow, the dependent variables are random functions of space 
and time, and no straightforward method exists for 
analytically obtaining stochastic solutions to nonlinear 
differential equations. Hence, the increased reliance on 
large-memory, high-speed digital computers to integrate the 
equations of motion. Large number of articles that 
specifically review turbulence computations are available 
(eg, Launder and Spalding, 1974; Reynolds, 1976; Lumley, 
1978; 1983; Rogallo and Moin, 1984; Speziale, 1991). 
Understanding and modeling of turbulence via numerical 
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simulations can solve a variety of engineering problems and 
lead to important technological advances. 

A distinguishable characteristic of high-Reynolds num­
ber turbulent flows is their large range of excited space and 
time scales. In homogeneous turbulence, for example, the 

energy-containing eddies are o[Re;V4 | times larger than 

the length scale of the smallest eddies (Kolmogorov length-
scale), where Re, = u'L/v is the turbulence Reynolds number 
(see, for example, Landau and Lifshitz, 1987). In order to 
resolve the flow adequately, a computer storage (at each 

time step) of o[Re,9/41 and a total number of arithmetic 

operations of at least Re^ are needed. 
Direct numerical simulations (DNS) attempt to integrate 

the instantaneous equations and resolve all scales for which 
there is an appreciable kinetic energy, but are limited to 
simple geometries and Reynolds numbers well below the 
values encountered in most practical situations. The reason 
being the enormous computer capacity needed to resolve 
the necessarily time-dependent, three-dimensional velocity 
and pressure fields (as well as density and temperature 
fields if the flow is compressible). As indicated above the 
number of active degrees of freedom in an incompressible 

turbulent flow is on the order of Re'/4 per unit volume. At 
Reynolds number of 108, modest by geophysical standards, 
there are on the order of 1018 active degrees of freedom per 
L3, where L is the characteristic length of the flow (Frisch 
and Orszag, 1990). This colossal number challenges the 
capabilities of both algorithms and fastest supercomputers 
available now or in the foreseeable future. 

Even if it can be carried out, the brute-force numerical 
integration of the equations of motion using the 
supercomputer is prohibitively expensive even at modest 
Reynolds numbers. For example, a single direct numerical 
simulation of a canonical wall-bounded flow at Ree = 
O[1000] requires about 1000 CPU hours and costs, at 
commercial supercomputer rates, close to $1 million. This 
requirement increases roughly by an order of magnitude if 
the Reynolds number is doubled. 

For now and the foreseeable future, a statistical 
approach, where a temporal, spatial or ensemble mean is 
defined and the equations of motion are written for the 
various moments of the fluctuations about this mean, is the 
only route available to get meaningful engineering results. 
Unfortunately, the nonlinearity of the Navier-Stokes equa­
tions guarantees that the process of averaging to obtain 
moments results in an open system of equations, where the 
number of unknowns is always greater than the number of 
equations, and more or less heuristic modeling is used to 
close the equations. Such modeling can take a variety of 
forms and levels of sophistication, including the simple 
one-point first and second moments, the two-point closures 
or spectral models, the subgrid-scale models for large-eddy 

simulations, and models based on the joint probability 
density function. 

In the simplest kind of turbulence modeling, the 
Reynolds stress is related to the mean-velocity gradient via 
a suitably assumed eddy viscosity, which may depend on 
position. Calculations of one-point first and second 
moments, such as mean velocity, mean pressure and 
turbulence kinetic energy, are then possible. Although 
gradient-transport models produce reasonable results in 
very few simple cases, they are in principle faulty (see, for 
example, Corrsin, 1974). Lumley (1992) summarizes the 
potential pitfalls in using first-order closure schemes. These 
are basically local models which, on introducing the 
Prandtl's (1925) concept of mixing length, make direct 
analogy between turbulent transport processes and 
molecular ones, an ill-fated assumption considering the lack 
of a clear-cut separation of scales in the former kind of 
transport. 

A turbulent flow is by necessity nonlocal in nature. 
Conditions at a point depend on the history of all fluid 
particles that arrive at that point. This is due to the 
hyperbolicity of the Navier-Stokes equations (Bradshaw et 
al, 1967). Ideally, therefore, a turbulence model should be 
nonlocal depending on the weighted integral, with fading 
memory and progressively broadening domain of 
integration, back over the mean path through the point in 
question. Second-order closure models essentially do that 
for second-order quantities, but the approximations used 
there for third-order quantities are again local, and so on. 
The structural models also satisfy this non-local requirment 
well. 

Second-order models attempt to close the Reynolds-
stress transport equations. Since these models are based on 
the two-point velocity correlation tensor, they provide more 
detailed information about the turbulence structure. The 
original idea for second-order closure schemes is due to 
Rotta (1951), but the massive computational requirement 
for solving six additional transport equations delayed its 
practical implementation for over two decades. 

An alternative approach to conventional closure schemes 
utilizes the renormalization group (RNG) theory. The 
dynamic RNG method, first developed for use in the 
quantum field theory, together with a correspondence 
principle have been formalized for the turbulence problem 
by Yakhot and Orszag (1986). The method uses dynamic 
scaling and invariance together with iterated perturbation 
techniques to evaluate the transport coefficients and 
transport equations for the large-scale modes. RNG 
computations have been shown to produce better 
comparisons with experiments for complex situations where 
conventional closure methods often fail; for example, for 
separated flows, swirling flows, etc. A major advantage of 
the RNG analysis is its independence of any experimentally 
adjustable parameters. 

Perhaps the next best computational strategy to direct 
numerical simulations is large-eddy simulations (LES), 
where the energy-containing eddies are directly computed 
but the more universal small scales are modeled. LES uses 
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a fixed spatial resolution and the effects of eddies not
resolved are modeled using gradient transport ideas
(Galperin and Orszag, 1993) or the more sophisticated
dynamic localization models. The two approaches are
contrasted below.

Inertial transfer of energy over a wide range of spatial
scales is a distinguishing characteristic of turbulent flows
and one which strongly influences their evolution. This
energy transfer originates from the nonlinear convective
derivative term in the Navier-Stokes equation and gives rise
to the familiar closure problem. The use of large-eddy
simulation as a tool to explore the physics of complex
turbulent flows is limited by current subgrid-scale (SGS)
models (Rogallo and Moin, 1984). Implicit in each SGS
model currently in use are fairly simplistic assumptions
regarding the nature of inertial energy transfer over the
subgrid wavenumber range. For example, the simple
Smagorinsky (1963) model lumps the effect of the subgrid
eddies into an effective subgrid viscosity in the Heisenburg
sense. The effect of shear at subgrid scales is neglected and
the validity of the Smagorinsky model has been questioned
by Kim et al (1987). Such a model encounters particular
difficulty when applied to complex nonequilibrium flows
with extra strain rates. In the more recent dynamic SGS
model (Germano et aI, 1991), the eddy viscosity concept is
retained but a space-time dependent Smagorinsky constant
is computed which allows the constant to adjust to the local
flow dynamics. A disadvantage of dynamic localization
SGS models with regard to their application in wall­
bounded turbulent flows lies in the failure to include effects
associated with the anisotropy of small scales. The models
can also predict energy backscatter which is too large and
consequently gives rise to negative eddy viscosity values.

9.2 Direct numerical simulations

Notwithstanding the colossal computer requirement, it is
clear that integrating the instantaneous equations of motion
is physically more sound than the heuristic closure required
for any of the alternative approaches discussed above. DNS
is not, however, without its detractors. A legitimate
question is what exactly is being simulated? It is not clear

Fig 63. Vortical structures in turbulent boundary layer. Direct numerical
simulation results from Robinson el 01 (1989).
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that DNS and a corresponding physical experiment at the
same Reynolds number are simulating the same flow. When
the numerical results are compared to experiments, at first
glance many points of agreement become evident. But
some subtle disagreements remain, for example in higher­
order statistics. Admittedly, such quantities are not easy to
measure in the laboratory either, and the observed
differences might be fairly blamed on the experimentalists.
However, notwithstanding that the full Navier-Stokes
equations are being integrated, there are several potential
pitfalls that are unique to DNS. These include the imposed
periodic boundary conditions, the unnatural way by which a
boundary layer becomes turbulent (it is neither properly
tripped nor evolving through natural transition), and the
sterilized environment in which the calculations progress
(perfectly smooth wall and precisely irrotational,
disturbance-free freestream). None of these conditions is
possible in a physical experiment, and their detailed effects
on the computed flow remain unknown. Two specific
discrepancies between physical and numerical experiments
will be elaborated later in this section.

More to the main topic of the present article is the ability
to extrapolate low-Reynolds number physical or numerical
experiments to practical situations. Reynolds-averaged
Navier-Stokes simulations model all the turbulent fluctua­
tions, and is not limited to low Reynolds numbers. The
problem is to figure out the proper model to use for each
range of Reynolds numbers. DNS, on the other hand, is by
necessity a viable tool only at very modest Reynolds
numbers. Without knowing Reynolds number effects on the
mean and turbulence quantities, DNS results can not be
readily extended to engineering applications.

Now let us return to the subtle discrepancies between
DNS and experiments. In the channel-flow direct numerical
simulations of Moin and Kim (1982), the ratio of rms
spanwise vorticity fluctuations to rms streamwise vorticity
fluctuations computed at the wall is less than half of that
computed from the near-wall velocity measurements of
Kreplin and Eckelmann (1979) or the fluctuating shear
stress right at the wall as measured by Fortuna and Hanratty
(1971) and Sreenivasan and Antonia (1977). It seems that
this discrepancy is a consequence of insufficient resolution
in the viscous sublayer in the numerical simulations. .

The second discrepancy concerns vortical structures,
admittedly very difficult to detect experimentally. It has
been shown in this paper that in a turbulent boundary layer,
for Ree < 103, Reynolds number affects the mean flow in
the outer layer and the turbulence even down to y+ =4. In
spite of that, the Direct Numerical Simulation (DNS)
studies of the flat-plate boundary layers (Robinson et al
1989) give us information on the organized turbulence
structures which would be valuable at higher Reynolds
numbers. In the following, the simulation structure at Ree =
670 is compared with the experimentally observed structure
at 600::; Ree ::; 17.5x103 (Head and Bandyopadhyay, 1981).

Figure 63 shows the numerically obtained vortical
structures in a volume of several 83 (Robinson et al 1989).
The fact that vortex cores .are always associated with
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regions of low pressure is utilized in here to identify the 
vortical structures. This way regions of significant vorticity 
are not confused with vortices, a potentially serious 
problem when dealing with unsteady viscous flows 
(Saffman and Baker, 1979; Robinson et al, 1989; Robinson, 
1991). Compared to flow visualization experiments at Ree = 
600 (Head and Bandyopadhyay, 1978), the immediate 
impression is that the number of structures per unit wall 
area is less and it is not difficult to track a structure all the 
way to the wall much like in the transitional layer. This 
gives credence to the criticism that what is being simulated 
numerically is not a fully-developed turbulent flow but 
more like a transitional boundary layer. 

A large structure can be defined as an agglomeration of 
successively forming hairpin vortices creating a linear 
upstream interface. However, Theodorsen (1952) and most 
others consider only one horseshoe vortex and not any 
agglomerations of them to describe a turbulent boundary 
layer. This causes a paucity of scales and restricts the 
models in their ability to better describe the turbulent 
boundary layer at high Reynolds numbers. 

A longitudinal section of Fig 63 contains one or two 
structures. In the constant-mixing-length region of the 
simulated boundary layer (8+ = 280 > y+ > 150), ct = 60 ± 
20 where d is the vortex diameter (Robinson 1990; Bushnell 

et al 1975). This gives a small range of 8+ / d^, viz 3.5 to 
7.0, which means there is a paucity of scales and that the 
overturning in the individual structures dominates the entire 
boundary layer. The overturning in the boundary layer 
diminishes with Ree (Head and Bandyopadhyay, 1981). The 
value in the constant-mixing-length layer, viz <f7S+ = 

0.21;j4 compares with the mean value of Falco's (1974) 
typical-eddy21 length scale C/5 = 0.31 at this Ree (see Fig 

58). 
It has been argued elsewhere (Bandyopadhyay, 1989) 

that increased vortex stretching and vortex-vortex 
interaction could lead the hairpin vortices to first spiral 
around itself into a double helix and then onto further 
spiraling between neighboring double helixes. Such process 
at Re6 = 600 was depicted in Fig 59 of the present paper. 
Vortex-vortex interactions are not present, however, in the 
direct numerical simulations at approximatley the same 
Reynolds number (Ree = 670). 

The previously cited high-resolution velocity and 
vorticity measurements by Klewicki et al (1994) also 
indicate some disagreement with the numerical results of 
Spalart (1988). The experimental profile of turbulence 
kinetic energy production is consistently lower, pre­
dominately resulting from differences in the Reynolds stress 
profiles. Both their turbulent diffusion and viscous diffusion 
terms peak closer to the wall than the computational 
profiles. In the experiment, the negative peak in the 
diffusion profile occurs closer to the wall than the positive 

Which is the cross-section of the hairpin vortices according to Head and 
Bandyopadhyay (1981) and Klewicki et al (1994). 

peak in the production profile. In contrast, an opposite 
situation is observed in the numerical simulations, where 
the diffusion term exhibits its negative peak further from 
the wall and crosses zero near the positive peak in the 
production profile (Fig 8 of Klewicki et al' s paper). 

10. NON-CANONICAL BOUNDARY LAYERS 
Thus far in this article the focus has been on the canonical, 
turbulent wall-bounded flow. The incompressible, isother­
mal, zero-pressure-gradient boundary layer developing over 
a smooth, rigid, semi-infinite flat plate, or the closely rela­
ted two-dimensional channel flow, is the "simplest" pro­
blem to study analytically, experimentally or numerically. 
Practical wall-bounded flows, however, have one or more 
complicating influences such as freestream turbulence, 
pressure gradient, compressibility, roughness, surface cur­
vature, three-dimensionality, wall compliance, heat transfer, 
stratification, change of phase, presence of side-walls and 
corners, etc (Bushnell et al, 1993). Such flows are naturally 
more difficult to deal with analytically, experimentally or 
numerically, but are nevertheless important to study for at 
least two reasons. Firstly, their behavior is often quite 
different from that of the canonical problem and therefore 
must be determined prior to rational design of practical 
devices. Secondly, as suggested by Clauser (1956) who in 
turn was inspired by Maxwell's concept of black box, the 
physical understanding of a canonical turbulent flow (the 
black box) could be improved by observing the response of 
the flow to different external influences. In other words, 
studying a boundary layer over a rough wall, for example, 
might shed more light on.the smooth-wall flow. 

From the point of view of Reynolds number effects on 
the non-canonical wall-bounded flows, it is intuitively 
appealing to conclude that these effects are at least as 
strong as those reviewed in the bulk of the present paper for 
the canonical flow. Corroborating data one way or the other 
are, unfortunately, not available. The few existing experi­
ments dealing with complex wall-bounded flows were not 
specifically designed to search for Reynolds number effects. 
In other words, such experiments were carried out at a 
particular Reynolds number or at a rather narrow range of 
Reynolds numbers. However, if the rms-velocity profiles, 
for example, do not scale with inner variables in the 
canonical flow, there is little reason to believe that the 
corresponding profiles in the non-canonical case would do 
so. There is, however, one notable exception to this 
argument. Unlike the canonical problem, wall-bounded 
flows over rough walls may indeed achieve true Reynolds 
number-independence. This trait will be elaborated below. 

In the present authors opinion, a complicating influence 
which is particularly useful to add to the arsenal of tools 
available to better understand the canonical wall-bounded 
flow is the non-smooth wall perturbation. Roughness is 
simple to implement, at least in physical experiments, and 
its effect on the flow is pronounced (see Raupach et al, 
1990, for a recent review of rough-wall turbulent boundary 
layers). At sufficiently high Reynolds numbers, the skin 
friction becomes independent of viscosity and depends 
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solely on the relative roughness scale. In this so-called 
fully-rough regime, the constant skin-friction coefficient 
contrasts the ever decreasing skin friction for a smooth 
wall. This has important consequences on the flow 
equilibrium as illustrated below. 

According to Clauser (1954), an equilibrium turbulent 
boundary layer is characterized by similarity of its velocity-
defect profile in the course of its downstream development. 
True equilibrium is achieved when the velocity-defect ratio 
becomes a function of (y/8) only and, therefore, indepen­
dent of Reynolds number. Tani and Motohashi's (1985a; 
1985b) results of analyzing available data seem to negate 
the existence of equilibrium state for smooth, zero-pressure-
gradient boundary layers. Tani (1986; 1987), on the other 
hand, show that equilibrium is possible for boundary layers 
in favorable pressure gradient over smooth as well as k-type 
rough surfaces. For a roughness height which increases 
linearly with the streamwise direction, equilibrium is 
achieved in zero pressure gradient. For d-type roughness, 
equilibrium exists for a certain range of pressure gradients, 
from favorable to adverse. These useful properties of rough 
walls may be exploited to better understand Reynolds 
number effects on smooth-wall boundary layers. 

There is at least one more argument in favor of studying 
wall-bounded flows over rough walls. As discussed by 
Kailasnath (1993), changes in the wall-bounded flow 
physics are due to changing the scale ratio, 8+ or a+, and 
not the Reynolds number per se. While the mean flow is 
primarily influenced by Re9, 8

+ may be the more significant 
parameter for the turbulence and the coherent structures. 
Such assertion is difficult to prove for the canonical flow 
case since a change in Reynolds number leads to a 
corresponding change in the scale ratio. However, this is 
not the case for fully-rough walls, making them particularly 
useful to study. In that case, the scale ratio at a given 
Reynolds number could be simply changed by systema­
tically varying the roughness height. 

A glimpse of the complexity of Reynolds number effects 
in non-canonical turbulent boundary layers can be had by 
examining such effects in the presence of freestream 
turbulence (Blair, 1983; Hancock and Bradshaw, 1983; 
Castro, 1984; Bandyopodhyay, 1992). This is a complica­
ting factor that is particularly important for turbo-
machinery blades where the Reynolds number is low (Ree < 
5000) and the freestream turbulence is high. The effect of 
freestream turbulence is to increase the skin friction. 
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However, as Hancock (1980) have shown, freestream 
turbulence cannot be measured by turbulence intensity 
(u'/UJ alone, but also jointly with the ratio of the 
dissipation length-scale in the freestream and the boundary 
layer thickness, (L0/b). The freestream turbulence parameter 
that combines these two effects is defined as: 

/ = _ 
U„ /[ 5 

(40) 

The simultaneous involvement of the scale ratio greatly 
complicates the Reynolds number dependence of the 
freestream turbulence effects (Bandyopodhyay, 1992). For 
example, due to freestream turbulence in the range o f /> 
0.0115, the wake component AU+ increases with Re9, and 
in the range of 0.0025 <f< 0.0095, AU+ drops with Re„. 
On the other hand, in the two ranges of / < ,0025 and 
0.0095 </< 0.0115, there is no apparent dependence on 
Ree. 

To account for low-Reynolds number effects, Blair 
(1983) empirically arrived at the following damping factor: 

p = [l + 3 -(Ree/425)n 

(41) 

According to Bandyopodhyay (1992), the fractional in­
crease in skin friction is then a function of only/„ = / • pn, 
where the exponent n takes the values -1, 1, or 0 depending 
on wheter AC/+ respectively increases, decreases or remains 
constant with increasing Re6. Figure 64 is a summary of the 
increase in skin friction due to freestream turbulence when 
the just mentioned dependence on Ree is taken into account. 

11. CONCLUDING REMARKS 
In the present article, we attempted to assimilate the 
considerable volume of experimental and numerical 
boundary-layer data that have been accumulated since the 
mean flow review of Coles (1962). Attention is drawn to 
some aspects of the emerging description of the structure of 
high-Reynolds number turbulent boundary layers. Both the 
inner- and outer-layer structures are affected by Reynolds 
number. The turbulence quantities do not accurately scale 
with wall-layer variables in the inner layer. The outer-layer 
turbulence structure (Su, peak i?H0, intermittency, w-u 
quadrant distributions, streamwise scales) is greatly 
changed at extremely high Reynolds numbers (Smits et al, 
1989; Smits, 1990) and new structures probably evolve due 
to vortex-vortex interactions. As aptly illustrated by 
Kailasnath (1993), the classical similarity theory of wall-
bounded flows that asserts a universal description for the 
near-wall flow is found to be increasingly deficient as the 
questions become more detailed. 

The numerically simulated low-Reynolds number, flat-
plate turbulent boundary layers are characterized by a 
paucity of scale and a lack of vortex-vortex interaction. 
Studies of the very low-Reynolds number turbulent 
boundary layer structure might not inherently involve 
several aspects of the high-Reynolds number structure 

which may be crucial to flow control through turbulence 
manipulation. 

Why does the mean flow scale, at least approximately, 
with wall-layer variables in the inner layer yet turbulence 
quantities do not? At a relatively low Reynolds number, say 
Ree = 500, the inner-layer mean flow appears to be already 
universal; so why should not the low-Ree structure be 
universal? These questions erroneously imply that there is a 
first-order direct connection between the mean flow and 
turbulence in a wall-bounded flow as in a free-shear flow. 
In a mixing layer, for example, the experimentally observed 
two-dimensional rollers are the direct result of an inviscid 
instability of the mean-velocity profile. Their characteristic 
dimension is equal to the layer thickness, and they contain 
almost all of the mean-flow vorticity. In a wall-bounded 
flow, on the other hand, the three-dimensional hairpin 
vortices are the result of a secondary or a tertiary instability, 
and their diameters are typically much smaller than the 
boundary layer thickness. The hairpins contain only a 
portion of the mean flow vorticity—that is, they are further 
removed from the mean flow. 

Experience with turbulence modeling also suggest that 
the turbulence in a wall-bounded flow is not derived 
directly from the mean flow. In the earliest turbulence 
models, shear stress is derived from the mean-velocity 
profile. Such models have not been widely successful. 
Townsend (1976) and Bradshaw et al (1967) have argued 
that instead there is a much closer connection between the 
shear stress and the turbulence structure. Townsend's work 
was limited to the near-wall region, while Bradshaw et al 
have extended the argument to the entire shear layer. Direct 
measurements of typical eddies have supported their 
assertion (Falco, 1974; Newman, 1974). 

It should be realized that ensemble averaging is a useful 
mathematical tool for computing typical characteristics as 
long as the variability in the quantities of interest is 
sufficiently low. The large variability in the measurements 
of streak spacing (standard deviation -0.3 to 0.4 of mean) 
and of vortex diameter even in full simulation at one low 
Ree of 670 (maximum diameter about twice minimum one) 
is disturbing and this issue has not been addressed yet. It 
raises the following questions: (1) Is the turbulence 
production mechanism independent of Reynolds number? 
(2) Even at one Re9> is there only one mechanism of 
turbulence production? (3) Can there be several 
mechanisms simultaneously in play each of which has a 
different Reynolds number dependence? In the context of 
these questions the conclusion arrived at by Keith et al 
(1992) for wall-pressure spectra that the scaling changes 
from mixed to outer layer as Re9 is increased, is intriguing. 
The answer to question (1) seems no longer an unequivocal 
affirmative. 

We may summarize our conclusions of the Reynolds 
number effects as follows: 

1. The widely accepted "asymptotic" state of the wake 
component is present only in the range of 6x103 < Re6 

< 1.5xl04. At higher values, it drops although at a 
much slower rate than that in the range of Re6<6xl03. 
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2. The Clauser's shape parameter is strongly Reynolds 
number dependent at Re9<103, and weakly above that. 

3. Alternatives to the logarithmic mean-velocity profile 
have been periodically proposed. Such heretical ideas 
deserve further scrutiny. Independent confirmation 
via well-controlled experiments that cover a wide 
range of Reynolds numbers, resolve the linear region 
and directly measure the wall-shear stress is needed. 

4. The freestream turbulence effect is dependent on 
Reynolds number. 

5. Turbulence measurements with probe lengths greater 
than the viscous sublayer thickness (~ 5 wall units) 
appear to be unreliable, particularly near the wall. 

6. Unlike the mean flow, the statistical turbulence 
quantities do not scale accurately with the wall-layer 
variables over the entire inner layer. Such scaling 
applies over only a very small portion of the inner 
layer adjacent to the wall. 

7. At low Reynolds numbers, the peak u-turbulence 
intensity increases slightly with Reynolds number in 
both channels and flat plates. 

8. The distance from the wall where the streamwise 
turbulence intensity peaks appears to scale with inner 
variables. 

9. In contrast, the corresponding distances, expressed in 
wall units, for both the normal fluctuations and the 
Reynolds stress move away from the wall as the 
Reynolds number increases. At high Re, the peak 
normal turbulence intensity and the peak Reynolds 
stress occur substantially outside the viscous region. 

10. The wall-pressure rms increases slightly with 
Reynolds number. 

11. Systematic changes in the mean and higher-order 
statistics as the Reynolds number varies could be 
considered as proper first-order trends within the 
framework of an asymptotic theory. At finite 
Reynolds numbers, the additive composite expansion 
formed from the inner and outer expansions of any 
turbulence quantity provides the only uniformly valid 
approximation in the matched region. 

12. In flat plates, trip memory can survive the statistical 
turbulence quantities at even Res > 6xl0\ where the 
mean flow is said to have reached an asymptotic state. 

13. The Reynolds number dependence of the post-
transition relaxation length of both the mean and 
turbulence quantities is not well understood. 

14. In pipe flows, the wave nature of the viscous sublayer, 
which is observable at low Reynolds numbers, gives 
way to a poorly understood random process at high 
Reynolds numbers. 

15. While the variously defined (small) length scales 
differ greatly from each other at low Reynolds num­
bers, they all asymptote to the mixing length at much 
higher Reynolds numbers (Ree > l.OxlO4). 

16. The outer-layer structure changes continuously with 
Reynolds numbers, and very little is known about the 
structure of very high-Reynolds number turbulent 
boundary layers. 

17. The aspect ratio of the hairpin vortices increases with 
Reynolds number as they also become skinnier. In a 
large structure, the number of constituent hairpin 
vortices per unit wall area increases with Reynolds 
number. 

18. Changes in the wall-bounded flow physics could be 
described as due to changing the scale ratio, 8+ or a+, 
and not the Reynolds number per se. In a given 
boundary layer, 8+ changes downstream at a rate 
slightly lower than Re9. The influence of the wall 
changes from non-local to local as this scale ratio 
increases. 

19. There is a dire need for high-resolution, reliable 
measurements of mean and statistical turbulence 
moments at high Reynolds numbers in smooth, flat-
plate turbulent boundary layers. 

20. Reynolds number effects in canonical flows can not 
always be extrapolated to non-canonical cases in a 
simple straightforward manner. 

In closing, the present article is a modest attempt to 
investigate critically the effects of Reynolds number on the 
mean velocity, higher-order statistics and coherent struc­
tures of the canonical wall-bounded flow. Not surprisingly, 
our work has provided more questions than answers. It is 
clear that the present knowledge of Reynolds number 
effects is basically phenomenological and a good theore­
tical understanding is largely lacking. Real progress in the 
field and resolution of its many existing controversies can 
only be achieved, however, when well-controlled, well-
resolved physical and numerical experiments are combined 
with at least a semblance of analytical foundation. 
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